David Husband, M.Sc in IT, Baremetal Engineer Extraordinaire
What you see detailed on my CV are "merely" the things | have done to earn money...
In reality, my abilities, knowledge and capabilities range far beyond my CV..

| am a BAREMETAL ENGINEER and what is in this document showcases a small part of my baremetal engineering...
| have an embryonic website on the subject here: http://baremetal.engineer/

The purpose of that web site’ is to expose and document some of what | have spent many years doing so that,
hopefully, young engineers can & will learn from it !!

In http://baremetal.engineer/baremetal.blockchain.engineer.pdf | showed my recently acquired blockchain
knowledge, including my analysis of how Blockchain can be applied to embedded loT systems.

In http://baremetal.engineer/baremetal.hardware.engineer.pdf | showed how electronic hardware has not changed
in essence over the last 60 years or so, due to being based upon the principles of physics established hundreds of
years ago. | showed how, counter-intuitively, electronics hardware was actually easier now due to ever increasing
integration and increasing functionality...

| also have extensive radio-communications knowledge and ability? (having been a licensed radio amateur since
1973); having successfully designed, manufactured, and sold worldwide, a range of products to decode various kinds
of data transmitted over radio... And | know what an SDRis! https://en.wikipedia.org/wiki/Software-defined radio

See these sample images: Image# 56, Image# 57 & Image# 58
To be brief here, | have created a number of Appendices where | go into further detail on particular topics®

In this document, | present an extract of what | have been doing over the last six months or so, which is designing,
writing and testing some low-level hardware interrupt drivers and tasks in assembler ("machine code") to enable
the use of the Ethernet interface on Zilog's eZ80 System-on-a-Chip using Zilog's eZ80F91 development platform...
See Imagett 1 below. The purpose of this document is to "showcase" a sub-set of my skills and abilities”...

This is not trivial because the eZ80's Ethernet Media Access Controller ("EMAC") is a very complex peripheral which
has to communicate with the Ethernet outside world via a complex Ethernet Physical Interface ("PHY")

Given the complexity of both these interfaces/devices, it takes a great deal of skill and persistence to get them
working correctly from "scratch" on any system... (See Complexity or Simplicity?)

See: http://baremetal.engineer/eZ80F91 EMAC.pdf & http://baremetal.engineer/New PHY ICS1894-40.pdf

Ethernet Physical 1
Interface ("PHY")

cas &

Zilog eZ80F91 Development Board
eZ80F910300KITG

Image# 1 - The Zilog eZ80F91 (eZ80F910300KITG) Development Board

Interrupts and the associated Tasks | get them to generate, are implicitly An Event-Driven Environment, & rather
hardware-centric

The EMAC part of the eZ80 has 8k of fast DMA RAM, 4k for receiving packets and 4k for transmitting packets...

1 You will see from that URL that my skills & abilities do not extend to scripting web pages !!

2 I am currently setting up my own satellite transmitting/receiving terminal to use the new Geostationary QO-100 Amateur Radio Transponder
https://amsat-uk.org/satellites/geo/eshail-2/ Web-SDR for QO-100 at Goonhilly: https://eshail.batc.org.uk/nb/ https://eshail.batc.org.uk/wb/
3 I've recycled some images, explanations, etc, from my Master's Dissertation from around 2011-2012...

And my recent work described here with the eZ80's EMAC, starting by implementing & testing low-level TCP/IP layers such as the Address Resolution Protocol
("ARP") and the associated ARP Cache, are totally new knowledge for me & indicate my on-going ability to acquire & apply new knowledge & skills...

http://baremetal.engineer/
http://baremetal.engineer/baremetal.blockchain.engineer.pdf
http://baremetal.engineer/baremetal.hardware.engineer.pdf
https://en.wikipedia.org/wiki/Software-defined_radio
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Medium_access_control
https://en.wikipedia.org/wiki/PHY#Ethernet_physical_transceiver
http://baremetal.engineer/eZ80F91_EMAC.pdf
http://baremetal.engineer/New_PHY_ICS1894-40.pdf
https://amsat-uk.org/satellites/geo/eshail-2/
https://eshail.batc.org.uk/nb/
https://eshail.batc.org.uk/wb/

The EMAC internally handles the "dirty work" of the basic Ethernet frames and their checksums and creates a
"descriptor table" for each received packet so a number of house-keeping tasks are performed. Initially an EMAC
register is loaded with the MAC address ("Hardware Address") of the host and enabled to generate an interrupt
upon the reception of a Broadcast Packet and/or a packet addressed to the hardware address the EMAC has been
setup with...

The EMAC also needs to be told what packet "block size" to work to and | have chosen to use blocks of 256 bytes...
So if an ARP Packet is received, its size is always 64 bytes which the EMAC reads into a 256 byte block in its DMA
RAM and then generates an interrupt...

Other packets such as TCP/IP packets with a type of 800 hex can vary in size, up to 3 or more 256 byte blocks before
an interrupt is generated...

The EMAC Rx 4k DMA packet buffer is a recirculating buffer which needs to be processed as quickly as possible.
What | do is to read each received packet into my own recirculating Packet Buffer of 64k of Ram and then generate a
buffer reading task and then exit the Rx Packet interrupt service routine...

The interrupt service routine needs to be as fast and as short as possible and to do the very minimum required.
Generally, just to read the appropriate data into a circular RAM buffer, and maintain a "putting-in" buffer pointer,
manage any registers associated with the interrupt and set an "interrupt buffer processing" task (which will, in due
course be run in the background, outside of the interrupt path) ...

Tasking in a closed system, i.e. where the task binding is early and is at compile time can be very simple and robust...
| use just ONE BYTE called "TASKS" to hold pending tasks and a routine called "PAUSE" to manage and execute tasks.
The size of PAUSE is only 54 bytes so it is compact and FAST... It is not able to be optimised !!

The use of PAUSE within The Forth Virtual Machine ("VM") and other looping structures is described in more detail
here: Multi-tasking

So, although the work described is in eZ80 assembler, it is done within a modified FIG-Forth model/environment.
See The Forth Paradigm

Forth is an extensible Interactive Compiler where the act of programming to solve a problem is to extend the word-
set of the language... Invented by Charles Moore

“The solution in Forth is not arrived at by writing programs, but by creating a new
instruction set in the Forth virtual computer. The new instruction set in essence
becomes the solution to the programming problem. This new instruction set can be
optimised at various levels for memory space and for execution speed, including
hardware optimisation. Forth allows us to surpass the fundamental limitation of a
computer, which is the limited and fixed instruction set. This limitation is also shared
by conventional programming languages, though at a higher and more abstract level”

Image# 2 - The Forth approach to programming. Image: Husband, 2011, based on Ting (1989, p. 10)

So to put it another way, a problem is solved in Forth by extending the Forth word-set in contrast to C or all other
high-level languages which force you to fit the problem into the word-set and to the syntax’ of the language being
used...

Now let's turn to the subject of how | test and develop my code... Over the years, | have devised a system that
leverages some of the unique aspects of developing/testing code on a Forth System...

This my variation of TEST-DRIVEN DEVELOPMENT and based upon The Forth Paradigm...

When | am developing in assembler, | do this in at least three ways which are all perfect examples of what the right-
hand side of Image# 47 is showing !!

Method#1
For my first example, | will describe how | started testing the ARP Cache...

Ethernet nodes on the network transmit "ARP Requests" as Broadcast messages because the TCP/IP protocol
encapsulated within Ethernet packets uses its own 32-bit IP addresses, whereas an Ethernet network uses 48-bit

> Syntax creates nasty unintended conseqguences; the more elaborate the syntax, the more error checking that can be done, but the more

human errors that will be flagged — the programmer then becomes a slave to the compiler; the problem is the arcane, arbitrary, and cryptic
syntax of most languages, which must accommodate all of the intended [future] applications; that makes the compiler much more elaborate....
My emphasis; based on (Biancuzzi & Warden, 2009, p. 65) citing Charles Moore, the inventor of Forth

http://www.forth.org/literature.html
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/Charles_H._Moore
https://en.wikipedia.org/wiki/Test-driven_development

"Hardware Addresses" a.k.a. "MAC Addresses" and sending an ARP Request is the only way to establish the
mapping between the two addressing systems... An ARP Cache is employed to greatly reduce the number of ARP
Requests so as to reduce network load...

| decided that as my setup was for a very small network, to set the ARP Cache size at 32 elements, with each
element having 11 bytes. See Image# 3 below...

My next step was to create a Forth word called "ARP_CACHE" which is invoked from the Forth System by merely
typing its name and pressing "Enter"... See Image# 4 below...

When the system is running with the Ethernet cable connected to my Netgear Ethernet Switch, packets are
automatically received and decoded in the background by the EMAC Rx Packet Interrupt handler, EmacRxirq, which
triggers a task, TASKO, which executes after EmacRxirq has finished and calls DO_CACHE to manage the ARP Cache...

ARP_CACHE is used after a test run of the system with the Ethernet cable being disconnected (See Image#
15 Point 1) after sufficient packets have been captured. There is more on this in Image# 4 above, the latest
version of Forth test-word ARP_CACHE has been run and is presenting the expected results... In Image# 5 above, a
capture from an earlier version of ARP_CACHE is shown, displaying a number of bugs in DO_CACHE..

(1) Duplicates are being saved... This is to be expected as the ARP_CACHE test-word was written before the full
functionality was implemented in DO_CACHE... Test Driven Development !!

(2) One of the items is showing an IP Address of 0.0.0.0 -- | thought this might be a bug in my s/w, but | Googled and
found it was known as a "Gratuitous ARP Request" but opinions varied and none accounted for the 0.0.0.0 IP
address, so | decided to filter it out entirely...

The ARP_CACHE word is relatively simple for me, so | did not expect it to have any bugs... However, | did see a
"feature" so | swapped the order in which the Cache data was presented (Image# 5) so that there would be no
"ragged edges" displayed as seen in Image# 5 below

This tests if DO_CACHE is extracting the ARP Request's "Source IP Address" and "Source Hardware Address" and
then storing them correctly in the ARP Cache's 32x11 byte memory array...

040000 00000000 ArpCachel: DB 0,0,0,0 ; Source IP Address
040004 00000000 0000 DB 0,0,0,0,0,0; Source h/w Address
04000A 00 DB 0 ; Item Flags

04000B ArpCache2: DS 11

040016 ArpCache3: DS 11

040021 ArpCached: DS 11

04002C ArpCacheb: DS 11

040037 ArpCache6: DS 11

040042 ArpCache7: DS 11

v 2ot wiineatinai i e catali g 2V i ~inre (64 dovaafitind b raduid i b adaiaadhan S At an S the A ot

040129 ArpCache28: DS 11
040134 ArpCache29: DS 11
04013F ArpCache30: DS 11
04014A ArpCache31: DS 11
040155 ArpCache32: DS 11
00040160 ArpCacheEnd: EQU $
040160 0100 ArpScore DW 1
040162 ArpCachePtr DS 3
040165 ArpCacheCtl DS 1

Image# 3 - The source code for defining the ARP Cache array | decided to implement

So in Image# 4 below, ARP_CACHE is showing the correct operation of the ARP Cache. It should be noticed that the
Ethernet Node 90:B1:1C:78:68:82 is miss-configured to IP 169.254.43.10 !!

At an earlier stage in the testing & development of DO_CACHE, that miss-configuration was causing DO_CACHE to
enter an endless loop... It suited my purposes not to fix the miss-configuration at that point because it was a good
test of my subsequent bug-fix !!

Summary:
Method#1 is also a form of static-testing, where perhaps you run the test-word before the software-under-test
("S.U.T"), and/or you run it afterwards and analyse the results... You then fix any bugs and re-run the test !!

So here, the new Forth Testing
word called ARP_CACHE is
executed from the keyboard by

typing its name followed by the ... and this is
[Enter] key... ARP_CACHE's output to
the terminal screen...

E

gl 00:90:A9:77:A7: .168.1.130
040008 :B1:1C:78:68: .204.43.10
040016 :B1:1C:5E:D6: .168.1.40
040021 :CA:3A:9E:DO: 168.1.4
04002C :AE:D3:ED:F6: .168.1.128
040037 :00:00:00:00: .
040042
04004D
040058
040063
B40B6E
040079
040084
04L0BBF
040090
0400A5
040080
0400BB
BL0BC6
040601
04068DC
BLOBET
040BF2
0400FD
040108
040113
B4011E
040129
040134
04013F
040140
040155
ok

OO EERLOLREERREELE@E
Ly Yy Y Y Y Y L TT-Yo YT
Ly Y T T Y Y Y
Y Y- -t YT LT Y T TP Yo P oYY

Image# 4 - The new Forth test word ARP_CACHE in action !

ARP CACHE

040000 192.168.1.131 A0:CE:C8:05:21:22 00
OB 192.168.1.133 90:B1:1C:78:68:82 00
1620168010130 00:90:29:77:A7:CB 00
192.168.1.133 90:B1:1C:78:68:82 00
192.168.1.133 90:B1:1C:78:68:82 00
PE2016801N130 00:90:29:77:A7:CB 00
192.168.1.133 90:B1:1C:78:68:82 00
1620168010130 00:90:29:77:A7:CB 00
192.168.1.133 90:B1:1C:78:68:82 00
192.168.1.133 90:B1:1C:78:68:82 00
192.168.1.3 CC:40:D0:11:18:C3 00
0.0.0.0 AQ:CE:C8:0h:21:22 00
162.168.1.131 A0:CENS<E:05:21:A2 00
92.168.1.131 AQ0| Thisis a"Gratuitous" 00
04009A 192.168.1.131 20 ARP Request 00
0400A5 192.168.1.131 A0:CE:C8:05:21:A2 00
0400B0 192.168.1.133 90:B1:1C:78:68:82 00
0400BB 192.168.1.131 A0:CE:C8:05:21:22 00

0400Ce 0.040.0 00:00:
0400D1 0.0/f0.0 00:00:
0400DC :00:

These are all
duplicates, and
there must be no

duplicates !

Hardware Address

040087 0.0.0.0 :00:| orMACAddress [
0400F2 0.0.0.0 00:00:00:00:00: 00
0400FD 0.0.0.0 00:00:00:00:00:00 0O
040108 0.0.0.0 00:00:00:00:00:00 00
040113 0.0.0.0 00:00:00:00:00:00 0O
04011E 0.0.0.0 00:00:00:00:00:00 00
040129 0.0.0.0 00:00:00:00:00:00 0O
040134 0.0.0.0 00:00:00:00:00:00 0O
04013F 0.0.0.0 00:00:00:00:00:00 0O
04014A 0.0.0.0 00:00:00:00:00:00 00
040155 0.0.0.0 00:00:00:00:00:00 0O
ok

Image# 5 - An earlier version of ARP_CACHE running showing a number of bugs !!

Method#2
This where you embed calls to a number of test-displays which display appropriate internal information, state, etc,
while the "software-under-test" is running... | show an example of this below...

This is done by making a call to a debugging display routine, in this case, ETH_DEBUG, as shown in Image# 7 below...
This is done from CACHE_LOOP as shown in Image# 6 below with the A Register just before the call containing a
value that determines which ETH_DEBUG routine is invoked as appropriate to suit the calling program. See Points
2,3,4 below

Whether or not ETH_DEBUG does anything is controlled by the state of the bits in CONTRL, (Point 5) so early in the
development/debugging cycle, ETH_DEBUG can be enabled and then later can be disabled®...

At present, the bit position in the A Register determines which Ethernet Debugging Display is executed, and there is
no way to select which ones are or are not, in the same way that the bits of CONTRL can be manipulated. This will be
updated in later iterations

010A83 @ crcuE_vooe:
e Test Cache Item ———------------—-——

010883 3801 Test Cache Item Display
010A85 CD BA 0B 01 9

P e See if IP addresses match —————-——-—————-

010889 3810 ; "Is it a Duplicate?” #1 Display
010A8B CD BA 0B 01 e

010A8F FD2723 HL, (IY+35) ; HL points to Source IP addr in Pkt

010A92 DD1700 DE, (IX+0) ; DE contains the contents of ARP Cache
; polnted to by IX

010A95 B7 OR A ; Clear Carry Flag

010A96 ED52 SBC HL, DE ; Do they match?

010A98 C2 D5 0A 01 NZ,DO_| CAC2 ; No

010a3C 3220 9 ; "Is it a Duplicate?” 2 Display
010A9E CD BA 0B 01

Image# 6 - How CACHE_LOOP invokes ETH_DEBUG...

P e Ethernet Debug Display ——————,
010BBA I The 4th bit (Bit 3) of CONTRL
e it (Bit 3) o

010BBA E5 PUSH EL determines if ETH_DEBUG will
010BBB 4021F6FF operate atall...
010BBF CBSE (5]
010BC1 CA C7 0B 01
010BCS E1 POP HL If enabled, ETH_DEBUG
010BC& C9 RET then looks at the state of

the bits in the A register...
010BC7 ETH DEO:
010BC7 CB47 BIT 0,A
010BCOY | And "ripples" JR Z,ETH DE1 e

through
010BCE accordingly... q _
010BCF 00
010BD3 C3 3A DC 01 JP ETH DE END At the moment, each degug routine
- just displays a text string and then

010BD7 ETH DE1: jumps to an ending stub that displays
010BD7 CBAF o - BIT 1 A a number of ARP_CACHE items...
010BD9 28 0OC JR Z,ETH DEZ2
010BDB 21 C1 0C 01
010BDEF CD 9A 42 00
010BE3 C3 3A 0C 01 Jp ETH DE_END e

Image# 7 - How ETH_DEBUG decides which display to use... (It tests the A Register)

So the code in ETH_DEBUG in Image# 7 above (Points 6 & 7) "ripples through" testing the contents of the A Register.
Jumps to ETH_DE_END shown at Point 8 above invoke a "common stub" that currently just displays some
information common to all the debugging display calls...

This can be seen in operation in Point 11 of Image# 9 below...

The advantage of doing it this way means the debug display calls in CACHE_LOOP above never need to change!

Given that the intention is to place all of this into the public domain so that young engineers can learn from it, it would be useful to be able to turn-on or off the
debugging displays as they show useful learning/operational information, too... (So the intention is to leave it in permanently, but allow it to be controlled from the k/b)

HE coM1 - Tera Term VT

File Edit Setup Control Window Help

/780 fig-Forth Development Software RO1

This is my custom fig-Forth system By David Husband (c) Friday 17th April 2020
doing a "cold start” and running the

classic fig-Forth virtual machine... ALL RIGHTS RESERVED

ERCTD 00-30 ch:E8. 9560 ok
o . .
PHY TO 15 F450 on PHY 11 ok This IP addr is hard-coded

Tialisineg PH e into the 8Z-80 EMAC

These are just some test values See comments later..

hard-coded to make such the
display words here are working
correctly...

Here, | have pressed "Enter” to be Here, | have connected the
sure the Forth "Outer Interpreter” (Escape ethernet lead, & the 1st packet is
word QUIT is working correctly... decoded... (see next capture)
Escape
I'then press "Esc” to test that the
tasking system is working...

Destination Addr: FF:FF:FF:FF:FF:FF
Source Address 00 99:A9:77:A7:CB
Tysa o ASAC ORP Packed

Image# 8 - Initial Power-up of the system

The MAC_ID ("Hardware Address") shown just above in Image# 8 - Step 2, is written into the six-byte EMAC Station
Address Register to identify the node and the software also associates the IP address in Step 2 with the node

Between Steps 4 & 5, | have connected the Ethernet cable into my network switch (Image# 15) and packets are being
received by the EMAC and the Ethernet Rx Interrupt is now processing packets correctly...

This can be seen in Image# 9, step 6, where the Ethernet header is decoded and it is known to be an ARP Request
Packet, and where its contents are decoded in Step 7

6 o . Destination Flddr FF:FF:FF:FF:FF:FF
This is my decoding of the ethernet Source Address : 00:908:09:77:A7:CB
header... Type : 8806 ARP Packet

Operation : ARP Request
Source Address : 00:90:A9:77:A7:CB

7 T 00-90:A9 11-AT:
ThIS iS my decoding Of the the ARP SOLIFCE IP Hddl‘ H 192 . 168 . 1 . 13@
Packet... Target Address : 00:00:00:00:00:00

Target IP Addr : 192.168.1.3

8

This is confirming the action of LT T
DO_CACHE upon encountering its EEEQBBQ
1st ARP Request Broadcast

Packet... BI;E)BBB

=l

oSN
SO ODODE
eSS0
—_
=

This is a view of the 1st few entries
in the ARP Cache to confirm that
the behaviour of DO_CACHE is

what | expect it to be...

SO

(10} Every time DO_CACHE adds an
entry to the ARP Cache, the

Cache_Score variable is i e
incremented by 10...
Every time a "Duplicate” ARP
Cache entry is detected, the

Cache_Score variable
decremented by 1...

Cache Score: 18

Image# 9 - Decoding the 1st ARP Request Packet

The information we are wanting to store in the ARP Cache is the Source Address and the Source IP Address as this is
the mapping that needs to be buffered in the cache to avoid extra Ethernet traffic. This is known at Step 8 where
DO_CACHE is called. DO_CACHE enters a 32-iteration loop starting at CACHE_LOOP (the start of which is seen in
Imagett 6)

At Image#t 9, step 11 above, is the debugging display produced by the code at label ETH_DE1 of Image# 7 above...

So the techniques described here in Method#2 are ideal for debugging real-time event-driven assembler code within
a Forth interpretive environment

Method#3

This can be used from assembler or high-level Forth code... | normally us it in a "crash-and-burn" mode, where |
invoke it from my "point-of-interest", it captures what | want it to, and then goes into an endless loop (effectively
"crashing the system") and then | can analyse the data it has captured and compare it against my expectations of the
code behaviour...

The debugging tools provided as part of the ZDS-II IDE by Zilog are not really adequate for debugging a virtual
machine, as they seem to be more suitable for debugging "C" Programs, and no surprise as Zilog supplies a C
Compiler as part of its free development support for its eZ80 system

Given that the Forth system uses a simple Virtual Machine ("VM") and indirectly-threaded code, | had to write my
own debugger’ to be able to support this kind of operation...

The eZ80 has two modes of operation -- a 16-bit mode which is "classic" Z80 and an extended 24-bit mode, and Zilog
support this operation by having "extended" versions of "classic" Z80 registers, apart from the AF register...

It is not "either/or"; there is a mixed-mode of operation that | use, and so whether a register, say DE, appears as 16-
bit register DE or as the 24-bit register DE.L will depend upon the code context, i.e. they are the same registers.
See Image# 10, Items 11 & 12 below, and Items 9 & 10

The only exception to this are the two stack pointers which are separate and independent registers because there
are two separate and independent stacks. You have the classic Z80 16-bit stack pointer in Iltem 1 and then there is an
extended stack pointer for a second, 24-bit stack in Item 2

Because Forth is a stack-based system, what all the stacks contain is of interest during debugging and so these are
exposed as seenin Items 3,4 & 6 See also The Importance of the Forth Stack

Because the Forth | use is indirectly-threaded, the contents of a memory location pointed to by the contents of a
register is of interest...

AF BC DE HL X TY sp PC (RPP) T 10000111
R887 0071 0128 0000 0000 0100 FF65 0OABB E2F8 0100 |sZ H PNC
(FFFF) (03ED) (FFFF) (FFFF) (0000) (0OCR) (FFFF) (18FE) (0DED) @
BC.L DE.L HL.L IX.L IY.L eSP.L PC.L
000071 8201A8'" §20000 (040000 [C000H 13FFE4 O010ABB T s the conternts of the
ags Register ("F Reg"
(03ED39) (FFFFFF) (FFFFFF) (000082) (00C900) (BBOAO1) (18FEED) The “F* seg part of the
"AF" register...
L-STACK BASE> 02C102 003871 000B91 OOFFF7 005555 005555 010A3F 0c0200 @)

P-STACK BASE> EO000 0B95 8142 3871 0BS91 FF81 5555 55559

R-STACK BASE> 023FE 38F5 E050 EOOO@

Image# 10 - The 24-bit Debugger, ADL_REGS

The Importance of the Forth Stack

The Forth Stack is fundamental to the whole operation of Forth and is available interpretively to the user keyboard.
It is used to pass values ("parameters") to and from Forth words and is therefore known as the "Parameter Stack"
and is shown above in Imagett 10 as the "P-STACK". It is 16-bits in size and is actually the microprocessor's stack®

The Parameter Stack operates implicitly from the keyboard because of the simple parsing behaviour of Forth's
"Outer Interpreter"® QUIT

The Simplicity (& power) of the Parser®
Forth works in any number base'!, and it defaults to base 10, so when you type a number as a text string and press
"Enter", the parser looks up that text string in the Forth dictionary™. If it does not find it in its dictionary, it tries to

7 .) .
Not quite as daunting a task as it may seem!
Another powerful, implicit debugging feature!
Forth's "Shell", of which you could have more than one! https://en.wikipedia.org/wiki/Shell (computing)

10 https://en.wikipedia.org/wiki/Parsing

u Providing you can represent the symbols in ASCII!
2 A singly linked-list containing about 95% of Forth

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Parsing

convert it from a number text string into an integer number® according to the number base. If it is successful, it
places that number onto the Parameter Stack. If unsuccessful it flags an error. (See Complexity or Simplicity?)

Implicit Test Scaffolding & Unit Testing

Given what | said about the stack in the previous section, it must therefore be obvious that Forth is inherently
capable of Test Scaffolding and Unit Testing. This is something | am very mindful of when | am developing &
debugging code! | know that | can feed my new Forth words with various values to perform testing!

Given Forth’s interactive & modular nature, test scaffolding is easy to implement, most times just involving entering
a word (from the keyboard) with the correct stack contents and then observing the execution behaviour of the word
and its subsequent effect upon the stack. If necessary, text can be output to the debug console and/or the register
dump utility used, both to provide further information to analyse

Method#4

| use a high-level Forth decompiler ("SPELL") | have developed as a powerful static code inspection/analysis tool,
mainly for when | write new compiler words so that | can see if it is creating the code | expect it to create...

See: Static Analysis using "SPELL"

My Attitude to bugs
My approach is to test and debug while developing using the methods described above and not to allow bugs to
fester !l See: Death to Bugs !!

Back to other languages!
As shown in Image# 11 below, a typical C (or C++ or even Java) application sits on top of the language
implementation which in turn sits on top of the operating system which sits on top of the hardware...

Typical High-Level VM Architecture

Cc

licati
Project Appicaton

C Language
inc Virtual Machine
I 1

¥
/ Operating System

v

Hardware

Image# 11 - A Typical C Application
Image: Husband, 2011, based on (Taivalsaari, 2003, p. 10)

Programming the C application consists of writing routines by invoking the various commands available within the
syntax (rules) of the language; in the case of C by defining, declaring and using functions and variables...
Arguments are used to communicate data between functions

The C language is responsible for communicating to and from the operating system and/or the host hardware. The
application must direct everything via the C language it is written in (and within its fixed, complex syntax)

In C, the operating system, the hardware and any associated data are

therefore purposely hidden from the application and the grogrammer!!”

Other languages work the same way

The Forth application architecture is shown below in Image# 12. Programming an application in Forth is radically
different to how you operate in other languages..

13 This will be either a 16-bit fixed-point binary number or a 32bit double fixed-point binary number...

14 And therein lies the real problem... Any high-level language that hides the operating system, the hardware and any associated data from the user (and the
application) is not ideal for the programming and/or testing of Embedded Systems. Forth does none of these things - quite the opposite!

“Forth is a computer language with minimal syntax. It features an explicit parameter stack that permits efficient
subroutine calls. This leads to postfix expressions (operators follow their arguments™) and encourages a highly
factored style of programming with many short routines sharing parameters on the stack” (Biancuzzi & Warden,
2009, p. 60) citing Charles Moore

“One doesn’t write programs in Forth. Forth is the program. One adds words to construct a vocabulary that
addresses the problem. It is obvious when the right words have been defined, for then you can interactively solve

whatever aspect of the problem is relevant” (Biancuzzi & Warden, 2009, p. 66) citing Charles Moore
(My emphasis)

Typical High-Level VM Architecture

Application

Virtual Machine @

Operating System

Hardware

Image# 12 - How Forth is more than just a Virtual Machine.
Image: Husband, 2011, Based on Taivalsaari (2003, p. 10)

The "Classic" Forth Embedded Model

Microprocessor

System
DBS
———p——— Forth
RS-232 UART | Outer Interpreter
~=———- (QuUm

Terminal

Forth Dictionary
Forth Vocabularies
(Lexicons)

Image# 13 - A Typical ""Classic'* Embedded Forth System (Now outdated)
Image: Husband, 2011
This was the relatively very simple FIG-Forth model promoted very successfully in the early 1980's by the Forth

Interest Group ("FIG"), and although it is still a valid system, it has very limited uses nowadays and would be
completely useless to implement any Internet of Things devices'®...

The "New Model" eZ80 Embedded Forth System
| am sure we are all familiar with how most embedded systems work nowadays with their user-interface operations
being based upon talking to them via an Internet browser program and their support for various USB devices...

15 In English we say "Red House"; in French they say "Maison Rouge" -- "House Red".... Reverse Polish Notation is quite a straightforward way of operating and
makes quite a few things much easier... Remember: Complexity or Simplicity?

Because it has no USB or Network Connectivity, either Ethernet or Wi-Fi

So, "talking to them via an Internet browser program" all sounds so simple and straight-forward, but is technically
quite complex... Your embedded system needs to run as its own website, serving or "pushing" dynamic web pages
over an Ethernet interface via the HTTP & TCP/IP protocol”,

The system outlined in Image# 14 below is the system | am working towards at the moment'®.

Microprocessor
System

HTML
Browser _

-

Ethernet Ss. \‘.EM AC
h~\ ~e

9 I I qplia—
Host =" 8P|, _-~"

and/or UsB -7
Peripheral -

T 5
B e DB . Forth
Serial ’ [~~~ """~ ~"" Quter Interpreter
Terminal . je RS-232 | _ _L{A_IEI'_ J (QUIT)

Forth Dictionary
Forth Vocabularies
(Lexicons)

Image# 14 - A "'"New Model* eZ80 Embedded Forth System

Because the Evaluation Platform ("EP") contains hardware & software Ethernet support via a PHY interface and an
internal EMAC, | am concentrating upon implementing as much functionality as | can using the EP

Given the difficulties in prototyping SMD-based devices, | am inclined to desigh my own "development expansion
platform", connecting to a short ribbon-cable that would plug-in to the "spare pins" interface shown in Point 11 of
Image# 1 & Point 10 of Image# 15 below... It would be used to implement the hardware functionality of a USB
interface as shown in Point 3 of Image# 14 above... And maybe even a CAN Bus interface...

USB, by its very nature is quite complex and at an early stage, design decisions™ must be made.

The MAX3421 USB Peripheral/Host Controller which interfaces to an SPI interface is my favourite, but for a product
development platform, you'd want two USB interfaces using the MAX3421 controller, because you might well
want/need to implement a Host USB and a Peripheral USB

Last but not least -- Configuration Mgt - Another VITAL Software Engineering Management Tool !!
I now use AllChange to manage my configuration management as an integral part of my software development &
testing process... See: Configuration Management - Baselines & Versioning

Summary
This document and the other referenced *.pdf's are intended to supplement David Husband's CV to
showcase/highlight some of his extensive experience, knowledge and abilities...

© 2020 David.Husband@baremetal.engineer, All Rights Reserved Created: 19/08/2020 Updated: 26/11/2020

All personal information is subject to the new Data Protection Act 2018 & the General Data Protection Regulation (EU) 2016/679
("GDPR")(which remains in force until the end of the transition period on 31 December 2020 & then goes into UK Law) & is used under licence

o However, that would still be very difficult to develop, test and debug without running a terminal program on the RS-232 serial port !!
18 And the practical work IS ALWAYS "FROM THE BOTTOM UP" - even though the design may be from "the top down"...
10 For instance, is my USB interface going to be a peripheral or a host?

https://datasheets.maximintegrated.com/en/ds/MAX3421E.pdf

Appendix A. EZ80 - DEVELOPMENT & TESTING SET-UP

This goes off to my
network switch & for
testing my code, allows
me to sample any
Ethernet Broadcast
Packets...

Zilog Debug
Interface
("ZDI"), similar
to JTAG

Zilog USB
Programming &
Debugging Pod

(connected to IDE)

Image# 15 - The Zilog eZ80F91 Development Board Set-up using Zilog's eZ80F910300KITG Platform

Like all manufacturers, Zilog supply a development kit for the eZ80 which comprises of quite a substantial system on
a circuit board along with an expansion interface on a 0.1" matrix*

See Image# 1 for a much bigger view of this board...
This board is quite "resource-rich" by Forth standards®...

A naked eZ80?* has 8k of fast static RAM only, with 256k of slower internal Flash ROM. Internal hardware support is
"luxurious" with two UARTSs, parallel 1/0, I°C, SPI, Ethernet MAC, Configurable "Chip Selects", "ZBUG" debugging
interface with JTAG functionality if needed, low-power standby modes, 32.768KHz driven RTC, etc...

The eZ80 is externally clocked via a 5MHz source and there is an internal PLL multiplier which clocks the eZ80 at a
maximum of 50MHz. The eZ80 "horsepower" is reckoned to be 80 MIPS @ 50MHz compared to the 4MHz Z80's |
used in the past which were rated at 0.58 MIPS @ 4MHZ*

If you look at some of the comparative figures in Footnote 22, below, Zilog seem to have engineered the eZ80 well...
If it could be clocked @ 100MHz, it would return 160 MIPS against the ARM Cortex-M3 with 125MIPS @ 100MHz

The current Zilog eZ80 development platform | am using is Zilog's second version...

There is 256k of internal eZ80 flash on both dev boards which defaults at 00-0000 hex to 03-FFFF hex

On the New Dev Board, CS50** has 8MB of flash starting @ 14-0000” & ending @ 93-FFFF running with 7 wait states
On the New Dev Board, CS1 has 1MB of ram starting @ 0C-0000 & ending @ 13-FFFF with 1 wait state

And another 1MB of ram on CS2, starting @ 04-0000 & ending @ OB-FFFF with 1 wait state

Referring to Footnote 20 below, Forth itself does not require anything like these resources to run applications well.
Referring to Image# 14 and to the "New Model" system | am working towards, the extra Flash would hold the HTML
pages that would serve the browser over the Ethernet interface; the ram for the same reason and for data buffering.

20 .) - .

0.1" matrix is always a bonus because prototyping hardware is much easier with 0.1" matrix parts, although they are becoming increasingly rare nowadays... Unless
you have an extensive prototype surface mount workshop, and production/rework facilities, etc, it is not a practical proposition to perform prototype work at the S.M.D.
level... You need S.M.D. skills, too!

I have quite happily run a "Classic" Forth system (see Image# 13) on the basic eZ80 within 8k of internal eZ80 Ram and in about 9k of Flash Rom out of 256k...
2 But you have to be careful! There are a number of eZ80 versions... | use the fastest, most resourceful version, but it must be understood with these kind of SoC
devices, that each pin may well share a number of functions and you must choose which you want -- you cannot have them all!

3 Intel 8086: 0.33 MIPS @ 5 MHz, Intel 286: 1.28 MIPS @ 12 MHz, NEC V20 (ran 8086 code - | used it!): 4 MIPS @ 8 MHz, Intel i386DX: 2.15 MIPS @ 16 MHz,
4.3 MIPS @ 33 MHz, ARM7: 40 MIPS @ 45 MHz, ARM Cortex-M3: 125 MIPS @ 100 MHz
2 CS0 = Chip Select 0

% | am able to determine the mapping of all these values along with the number of wait states and the type of memory interface as all the Chip Selects are configurable.
This is a BIG PLUS-POINT for the eZ80...

These resources are purely to support the use of Zilog's ANSI C Compiler to run apps in C (They need this much to run!)... And that should tell you a great deal!

https://en.wikipedia.org/wiki/Instructions_per_second#Timeline_of_instructions_per_second

So, referring to Image# 15 above, here are some notes against each point highlighted:

(1) ' am using this to control the Ethernet packets going to the Dev Board, by plugging and unplugging at this point
rather than doing it at Point 7 so as to avoid "wearing" out the socket @ 7

(2) Is the "PC Style" DB9 pin-out serial port which goes to my PC running the "Tera Term" terminal program and
linking at 115,200 bauds

(3) This is a "pseudo" RS-232 port over an USB link using one of the FTDI UART-to-USB devices. | don't currently use it
(4) This is the Zilog "ZDI" debugging interface that connects to the Zilog USB Pod (5) supplied with the development
kit

(6) This is the USB lead from the pod that connects to a USB port on my PC and interfaces to the ZDSII Integrated
Development Environment ("IDE"), part of which is featured below in Image# 16

(7) Is the Ethernet lead connecting to (1) and then goes on to the Ethernet Port on my PC

(8) & (9) As labelled

(10) Is the expansion bus interface containing a number of useful®’

signal lines...

(11) Is the 5v power in. Alternatively, | could power it via the USB connection at (3)

Z Fig_RO1 -- ZDSII - eZ80Acclaim! 5.3.3 (Build 19083001) -- eZ80_ETHERNET.ASM - [eZ80_ETHERNET.ASM]

FdFile Edit View Project Build Debug Tools Window Help 4
D@k e x|8mE ||[oeug R L —
>u =/
| =]
=3 Assembly Only Project Files e EELL 1= SU%EL) ; Point towards
5Bl 6Z80SYSTEM ASM D A
= [eZ80_EMAC_PHY ASM CALL IS TXCHAR
[EMAC.S INC HL
) EMAC_REGS S TLINZ 5B
=) IEI eZ30_INTERRUPTS.ASM LD A, (HL)
“.[m eZ80_ETHERNET.ASM CALL Is OUTHX
[eZ80F91.S
& B 6Z80KERNEL ASM LD HL , TSK_MSGS "Source Addre
-[@ eZ80SPELLASM CALL M=G
[l 6Z80TOOLS ASM D B 5
[eZ80KERNS.S LEA HL, IY+13 . calculate new
[eZBOREGS.ASM 83 1D A, (HL) . Point towards
=0 External Dependencies CALL . IS OUTHX
[« EMAC.S LD A,
-[@ EMAC_REGS.S CALL . IS5 TECHAR
[6780 EMAC_PHY ASM INC HL
[eZ80_ETHERNET.ASM E%NZ iB(HL]
[eZ80_INTERRUPTS ASM ‘
[6780F91.S CaLL IS5 OUTHX
[« eZBOKERNEL ASM T HL , TSK_MSGS "Type!
[eZBOREGS ASM
[eZ80SPELL.ASM LD A, (I¥+19) . Point towards
[eZ80TOOLS.ASM CaLL IS5 OUTHX
-3 Web Files LD A, (IY+20)
CALL . IS5 OUTHX
LD A,00H IFPv4 Datagram 7
CP A, (IY+20)
NZ, 8F ; Mo
HL , TSK_M3G7 . Yes
LAt P e A L

Image# 16 - A Fragment from Zilog's ZDSI|I Integrated Development Environment

In Image# 16 above, is a fragment from the ZDSII IDE which Zilog supply free to support the use of their various eZ80
flavours and their ZDI debugging pods. These allow the ZDSII IDE to download and program the internal eZ80 flash
and any external flash, and to perform various generic debugging tasks associated with breakpoints and single-
stepping...

When you start using these tools from assembler programs, you very quickly become aware that the real intention is
for them to support the "C Compiler" which | am sure they do really well...

Also there are a number of serious bugs in the Assembler, and | can see from the Release Notes for the occasions
when Zilog performs updates and bug fixes that Zilog's efforts are directed towards fixing bugs that the "C Compiler"
throws up. This leads me to believe that most users are using the "C Compiler"... None of this is a problem for me!!

2 And omitting a number of useful signal lines... The J10 connector has 64 pins, but all 32 of the even pins go to Ov -- what a waste when the I°C lines and a number of
other lines (like the pins for the RTC backup) should be on J10...

Appendix B. THE FORTH PARADIGM

Forth was conceived and developed on mainframe computers by Charles Moore and his associates® towards the
end of the 1960’s and throughout the 1970’s. During the 1970’s Forth was ported to a number of microprocessors by
members of the Forth Interest Group (FIG, 2007)

“Charles Moore is one of the greatest software developers®. The 'Forth' language he invented is still in use today,
particularly by NASA, and has never been bettered for instrumentation and process control. He still argues
persuasively that the only way we can develop effective software quickly is to embrace simplicity. Like Niklaus
Wirth, he remains a radical whose views have become increasingly relevant to current software development..”
(Morris, 2009) (My Emphasis)

| developed Forth over a period of some years as an interface between me and
the computers | programmed. The traditional languages were not providing the
power, ease, or flexibility that | wanted. | disregarded much conventional
wisdom in order to include exactly the capabilities needed by a productive
programmer. The most important of these is the ability to_add whatever
capabilities later become necessary.

Image# 17 - Extensibility is a major Forth feature
Image: Based on Moore (1981, p. vii)

The Forth language invented in the late 1960’s is one of computing’s best kept secrets... Widely used but little
known....

Forth is highly reflective, which means that most of Forth is written in itself. See "The Forth Virtual Machine"

It is a fast, compact, modular, reflective, re-entrant, object-based, extensible, untyped, stack-based, interactive,
threaded interpretive, incremental compiler (and operating system); ideally suited to efficient software development
and debugging (Frenger, 2001; Simon, 2009) and to driving and controlling all kinds of hardware (Colburn, Moore &
Rather, 2011; Pigott, 2006; Simon, 2009)

In fact, the way you “program” an application in Forth is to create word definitions to extend the Forth language set..

Due to the modular and interactive characteristics of Forth, the development methodology is very close to Extreme
Programming (“XP”)

One principle that guided the evolution of Forth, and continues to guide its
application,is bluntly: Keep It Simple A simple solution has elegance.
It is the result of exacting effort to understand the real problem and is
recognised by its compelling sense of rightness. | stress this point because it
contradicts the conventional view that power increases with complexity.
Simplicity provides confidence, reliability, compactness, and speed.

Image# 18 - Charles Moore: Keep it Simple! (Hooker, n.d; Leveson, 1992)
Image: Based on Moore (1981, p. vii)

“Forth is a design language. To the student of traditional computer science, this statement is self-contradictory. 'One
doesn't design with a language, one implements with a language. Design precedes implementation...' Experienced
Forth programmers dis-agree. In Forth you can write abstract, design-level code and still be able to test it at any time
by taking advantage of decomposition into lexicons®. A component can easily be rewritten, as development
proceeds, underneath any components that use it. At first the words in a component may print numbers on your
terminal instead of controlling stepper motors. They may print their own names just to let you know they've
executed. They may do nothing at all. Using this philosophy you can write a simple but testable version of your
application, then successively change and refine it until you reach your goal"

(Brodie, 2004, p. 31)

8 Elizabeth Rather, Leo Brodie, Kim Harris...

29 . -
Also rather a clever hardware engineer (now a multimillionaire) who holds very valuable patents on a number of fundamental microprocessor innovations (MMPP,
2007). See: http://spectrum.ieee.org/at-work/innovation/ga-with-moores-ip-manager or Google “Moore Microprocessor Patent Portfolio”

One meaning of lexicon is "a set of words pertaining to a particular field of interest” (http://www.thefreedictionary.com/lexicon)

http://spectrum.ieee.org/at-work/innovation/qa-with-moores-ip-manager
http://www.thefreedictionary.com/lexicon

Develop from a Prototype (with little planning)
Moore and Brodie take their approach further so that the various processes become a method of problem-oriented
solution thinking... In essence:

"Get a bare-bones application running quickly.
Demonstrate it and get feedback from users.
Then modify and expand capability: much

more satisfactory than planning in advance"”
[Moore]

Image# 19 - Develop from a Prototype
Image: Based on (Morris, 2009)

There are some advantages in this approach — you very quickly create a working application prototype of some kind
to show your stakeholders and then you can develop this prototype®... Run on prototype hardware too, until/while
“real” hardware platform is being designed/developed... However, the analysis of the problem and the initial starting
design must be sound...

The Forth Modus Operandi
The Basic Idea

Forth is expressed in words and numbers and is separated by spaces, i.e.:
HAND OPEN ARM LOWER HAND CLOSE ARM RAISE

These commands may be typed directly from the keyboard or edited onto mass storage and loaded

All words, whether included with the system or user-defined, exist in the “dictionary”, a singly linked list

A “defining word” is used to add new words to the dictionary. One defining word is = (pronounced “colon”), which
is used to define a new word in terms of previously defined words. Here is how one might define a new word called
LIFT

: LIFT HAND OPEN ARM LOWER HAND CLOSE ARM RAISE ;

The final 5 terminates the definition. The new word LIFT may now be used instead of the long sequence of words
that comprise its definition

Forth words can be nested like this indefinitely®” and writing a Forth application consists of building increasingly
powerful definitions, such as this one, in terms of previously defined words

Implicit Calls
To execute (or “run” or invoke) the word LIFT for instance, you don’t have to say CALL LIFT you just type
LIFT oritis encountered in the input stream and is invoked

Implicit Data Passing
Passing data in Forth is implicit and is achieved via Forth’s Parameter Stack, which in most implementations is the
microprocessor’s stack. However, there are no PUSH or POP operations in high-level Forth

The implications of Implicit Calling and Implicit Data Passing

As data is passed implicitly, we are relieved of the act of passing data to and from our code, leaving us to
concentrate upon the functional steps of the data’s transformation

Passing data via a stack has the advantage that words can nest within words, because any word can put numbers on
the stack and take them off without upsetting the flow of data between words at a higher stack level®. In this way,
the stack supports structured, modular programming while providing a simple mechanism for passing local
arguments

Forth eliminates from our programs the details of how words are invoked and how data is passed
What does that leave? Only the words that describe our problem...

Having words, we can fully exploit the recommendations of Parnas (1972):

3 Contrary to other development methods where the initial prototype may/will be discarded
32 And Forth's Return Stack automagically keeps track of this nesting...

3 Provided that the word doesn’t consume or leave any unexpected values...

"to decompose problems according to things that may change, and to have each module consist of many small
functions, as many as are needed to hide information about that module"

Forth allows us to write as many words as we need, no matter how simple they may be

Programming with Components
Having a large set of simpler words makes it easy to use a technique that Brodie calls “component programming”

He defines a component as “the smallest set of interacting data structures and algorithms that share knowledge
about how they collectively work...” (Brodie, 2004, p. 20)
In reality, they are just a collection of well-chosen and well-designed Forth words...

A component represents a resource which can be a piece of hardware such as a UART, or a software resource such
as a queue or an object, and all components will involve data objects and algorithms

Brodie calls the Forth words that make up the component, the “Lexicon”. The design of the lexicon is very important
as the essence of a Forth application is the creation of the appropriate problem-solving set of words as an extension
to the core set of Forth words

DEAL /\TEM B Loo,
600%’(WHATer '\’U?*“/ / I 00k }LEXICDH

I | T
.r{ T T
kﬂ' D b
__Data objects Aijonthm _ l'
) (thmgs) T 7T T (actions

Figure 1.8: A lericon describes a component.

Image# 20 - An example Forth Application’s Lexicon & associated Component
Image: Based on (Brodie, 2004, p. 22)

Forth is word-based, so a real Forth application consists of a number of words all working together to provide a
functionality set. These words represent the various components defined, identified and documented during the
analysis and design process... See Image# 21 below

yhHE ¥
(OFFEL

LEXICON

MOVEMENT
LERICON

COMVERSION
LEXICON

STEPPER-

MOTOR

LEXICON SENSOR
READING
LEXICON

LANGUAGE
(FORTH)

[I IENESY | peaL computeR

Image# 21 - The Entire Application Consists of Components represented by Lexicons
Image: (Brodie, 2004, p. 23)

Problem-oriented Solution Thinking
Brodie suggests nine phases to this problem-oriented solution thinking activity:

Analysis:
1. Discoverthe Requirements and Constraints
2. Build a Conceptual Model of the Solution
3. Estimate Cost/Schedule/Performance

Engineering:
4. Preliminary Design
5. Detailed Design
6. Implementation

Usage:
7. Optimization
8. Validation and Debugging
9. Maintenance

Image# 22 - The Nine Development Phases
Image: Based on (Brodie, 2004, p. 38)
Iteration - The Scientific Method

This is what drives all the efforts behind the project and as described by Harris (1981) is based upon the scientific
method, which is itself iterative, being ...

. a never-ending cycle of discovery and refinement. It first studies a natural
system and gathers observations about its behavior. Then the observations are
modeled to produce a theory about the natural system. Next, analysis tools
are applied to the model, which produces predictions about the real system’s
behavior. Experiments are devised to compare actual behavior to the predicted
behavior. The natural system is again studied, and the model is revised.

The goal of the method is to produce a model which accurately predicts all
observable behavior of the natural system.

Image# 23 - The Scientific Method.
Image: Based on Brodie (2004, p. 39) citing Harris (1981)

The Iterative Approach to Development

what

new

p:%:ure mnts\"* functiong constraints
how to do
old |
‘S‘-isl‘em functions

test +debug!!
Praﬁram

implementation

Figure 2.1: The iterative approach to the software development cycle, from
“The Forth Philosophy,” by KiM HARRIS, Dr. Dobb’s Journal.

Image# 24 - An Iterative Approach to Development
Image: Husband, 2011, modified® from Brodie (2004, p. 39) citing Harris (1981)

3 ... by adding “+debug” to “Test Program” stage... That was a serious omission....!!

The Iterative Approach to Analysis
Referring to Image# 24 above, Brodie breaks down the “Analyse Problem” phase into an-other iterative cycle, shown
below in Image# 25

Customer's rﬂiu' rements
needs

Customer more -explicit
revis ions specificationg
acceptance '

documented

model

Figure 2.2: An iterative approach to analysis.

Image# 25 - An Iterative Approach to Analysis.
Image: Brodie (2004, p. 48) citing Harris (1981)

Start with the Simplest Solution & Few Constraints

Software developmentin Forth seeks first to find the simplest solution to a given
problem. This is done by implementing selected parts of the problem separately
and by ignoring as many constraints as possible. Then one or a few constraints
are imposed and the program is modified...

Image# 26 - Develop with very few initial constraints
Image: Brodie (2004, p. 40) citing (Harris, 1981)
The Importance of the Conceptual Model of the proposed Solution
It must be self-evident that if the conceptual model of the solution is incorrect and/or deficient then the whole
project may not be viable...

The Conceptual Model *is* Forth...

As far as the software is concerned, the application is not “written in Forth”; Forth is the application. The language is
extended as required, to contain word sets (“Lexicons”) which describe and implement the chosen functions and
solutions

Some Tips when Developing the Conceptual Model:

s Sirive to build & solid conceptual model before beginning the design

s First, and most importantly, the conceptual mode! should describe
the system's interfaces

*» Decide on error- and exception-handling early as part of defining the
interface

o Develop the conceptual model by imagining the data travelling
through and being acted upon by the parts of the mode/

s Youdon'tunderstand a problem until you can simplify it

s Generality usually involves complexity. Don't generalize your
solution any more than will be required; instead, keep it changeable

s To simplify, quantize

s To simplify, keep the user out of trouble

s To simplify, take advantage of what's available

Image# 27 - Tips for Developing the Conceptual Model
Image: All points from Brodie (2004, pp. 48-65)

Appendix C. THE FORTH VIRTUAL MACHINE

What is a "Virtual Machine" ("VM") ?

It is “an ‘abstract’ computing architecture or computational engine that is independent of any particular hardware or
operating system....” (Taivalsaari, 2003)

A virtual machine can be extremely powerful. It need only exist in somebody’s mind...
The classic VM is the product of one of computing science’s greatest minds; Alan Turing’s 1936 thought experiment,
now known as the “Turing Machine”. (Turing, 1936)

What is a TURING RMACHINE?

In 1936 Alan Turing, a British Iathematiciar, came up with an idea for an imaginary machine that could
catry out all kinds of computations on numbers and symbols. He believed that if you could wiite down a
set of rules describing ywour computation his machine could faithfully carry it out. Turing's Machine is the
cornerstone of the modern theory of computation and computability even though it was invented nine
years before the creation of the first electronic digital computer. The Turing Machine consists of

+ an Input/Ouiput Tape,
e the Turing Machine itself,
+ and a Rule List

The Input/Owiput Tape iz like the roll of paper you find on some printing calewlators, only this roll of paper
iz infinitely long and is stretched like a scroll between two rollers so it can be wound forwards and
backwards. The tape is divided into cells. The cells contain the input and output symbols and change
frequently as a progra is runming.

The Turing Machine itself is pictured in this applet as some kind of mechanical '"black box' that sits aboswe
the tape and reads in symbols one at a time from its ReadWWrite head. The machine is alwaysin a
patticular internal State indicated by a mamber on the box

The Rule List is what determines the hMachine's move at any particular point.

Ui gl el Aad el B g e gt o o g

i
§
;;I

v e o | astuns | s | o | crsngn s [0 | st ko =1 oas

Image# 28 - A modern online Java representation/implementation of a Turing Machine
Image: Husband, 2011, based on: Schweller (2003)

Moving forward in time to 1968, legendary computer scientist, Donald Knuth published the seminal series of books
called “The Art of Computer Programming”

His work featured an imaginary virtual machine called “MIX” (See Image# 29 below) and its accompanying MIX
assembly language®

Subsequently a number of high-level languages have employed a VM internally to avoid platform dependence and to
isolate programs from hardware details. There are other reasons... See Image# 30 below

As Taivalsaari points out in Image# 31 below, the Forth VM is very simple®; | would characterise it more as a “Virtual
Microprocessor”....

35 .

A man who was not afraid to use assembly language...
36 . .

Surprise! Surprise!

OB MIX)

Register A Register X
+ |Al1 | A2 | A3 | A4 | A5 + | X1]X2|X3|X4|X5
Register 11 @
; Overflow Comparison
+ 114|015 toggle @ @ indicator
Register 12
£ |124]125 Memory cells
Register I3 0000:
+ | I34{135
0001:
Register 14
2= 0002:
+ | 144|145
0003:
Register I5
+ | 154 | I55
Register 16
+ | 164|165 3998:
Register J 3999:
+ | J4 1 J5
ey
o8 DoE of &
. . . T EEREERY
Magnetic tape units Disks and drums LSESEEEE‘E
vojwUr{ --- [U7| US| --- |U14|U15|U16|U17 U118 U19

Fig. 13. The MIX computer.

Image# 29 - Knuth’s MIX Virtual Machine
Image: (Knuth, 1997, p. 126)

Languages that Use
Virtual Machines

« Well-known languages using a virtual machine:
— Lisp systems, 1958/1960-1980s
— Basic, 1964-1980s
— Forth, early 1970s
— Pascal (P-Code versions), late 1970s/early 1980s
— Smalltalk, 1970s-1980s
— Self, late 1980/early 1990s
— Java, mid-1990s

+ Numerous other languages:
— ... PostScript, TCL/TK, Perl, Python, C#, ...

Image# 30 - Languages that use Virtual Machines

Image: (Taivalsaari, 2003, p. 13)

Why is Forth Interesting from the
VM Designer's Viewpoint?

* One of the easiest virtual machines to build.

* The VM consists of a small number of distinct
components (stacks, dictionary, interpreter,
virtual registers, primitives); no extra “fat”.

+ The language itself is small, simple and
efficient, and provides an unusual combination
of high-level abstraction and very low level
programming capabilities.

* High level of reflection (significant portions of
the VM written in the language itself.)

* |deal for embedded systems (if the awkward
syntax is not exposed to the end user...)

Image# 31 - Forth is an “interesting” VM...
Image: (Taivalsaari, 2003, p. 30)

In Imagett 31 above, Taivalsaari's last comment is: "Ideal for embedded systems (if the awkward syntax’’ is not
exposed to the end user..." | do not agree with his personal opinion...

He is from Finland®. He clearly did not like (or take to) Reverse Polish! (as he says the Finnish equivalent of "Red
House", so reverse polish will instinctively feel strange to him)..
Footnote 36 repeats what | said in Footnote 13 earlier...

The Forth Virtual Machine Registers
A virtual machine must have virtual machine registers to hold the data that it works with...
figForth’s are shown Image# 32 below, along with how they are mapped to real eZ80 registers

figForth VM Z80
SP Data stack pointer SP
RP Return stack pointer (memory)
IP Interpretive pointer BC
W Current word pointer DE

Image# 32 - Forth VM Registers mapped to eZ80 Registers (Typical mapping)
Image: Husband, 2011, based upon (Ting, 1989, p. 27)

Inner Interpreters (a.k.a. "Address Interpreters")

Ting (1986, p. 52) takes a wide (and very insightful) view of Forth inner interpreters, saying that they “are a set of
execution procedures, usually in the machine code of the host computer, which execute various Forth words by
processing the information stored in their parameter fields. The address of such a procedure is stored in the code field
of a word definition. Forth definitions of the same class have the same address in their code fields. Two major inner
interpreters are used to process code definitions defined by machine instructions and colon definitions defined in
terms of other existing Forth words...”

| am not convinced that there are two code interpreters as Ting claims;
| only see one and | see the other as a (re-)entry point to the address interpreter...

37 In English we say "Red House"; in French they say "Maison Rouge" -- "House Red".... Reverse Polish Notation is quite a straightforward way of operating and
makes quite a few things much easier... Remember: Complexity or Simplicity?
In English we say "Red House"; in Finnish they say "Punainen Talo" ("Red House"), where "House" = "Talo" and "Red" = "Punainen”. | rest my case... Q.E.D.

Zilog 260 & Zilog eZ80 (8-bit)

0004648 D5 WHPUSH: PUSH DE
000468 ES HPUSH: PUSH HL
000462 C0 BS 02 MNEXT: CALL PALSE
00046F 04 MExTZ2: LD A, (BC)
000470 03 THC BC
000471 6F LD L,
000472 0A LD A, CBC]
000473 03 IHC BC
Qoo47a a7 LD H, A
000475 SE MEXTLl: LD E, (HL)
Qoo47e 23 IR HL
000477 56 LD 0, CHLD
000473 EB Ex DE, HL
000479 E9 ap (HLD

NEC 78C14 (8-bit)

WEPUSH: FPUSH HL

BFUSH: PUSH BC
MEXT : CALL PAUSE
MEXTZ : LDEAX (DEJ++
MEXT3: DMoV HL, EA
MEXT1: LDEAX CHLI++
JEA
Intel 8086 (16-bit)
DPUSH: PUSH o
APUSH: PUSH i
MEXT : CALL PAUSE
MEXTZ: MOV A, Ps: [1x]
INC I
ThC I
MO Bw, [Aw]
MEXTL: MOV oW, [Bw]
INC oW
BR. Ps: [Bw]

Zilog ZNEO (16-bit)

0oO00242 130A MEXT: LD WP, (IP++)
0oo0o244 F204 P (WP

Image# 33 - Some Inner Interpreters (Address Interpreters) implemented on various microprocessors

Image: Husband, 2011, based upon some work done since 1983 based on the figForth models. Zilog ZNEO based upon
work by Rodriguez (2006)

A number of “other minor inner interpreters are used to process constants, variables, user variables and other types
of data and structures” (Ting, 1986, p. 52)

| like the way Ting perceives these Forth words as separate Interpreters (and Compilers) because that has enhanced
my own understanding of them...

Appendix D. MULTI-TASKING (TIME MULTIPLEXING)

The Role of Multitasking in an Event-Driven Architecture

Multi-tasking is vital to implementing an event-driven architecture as it allows each event to have its own task or
task handler and to execute as if it were an independent module or thread...

Multi-tasking generates the illusion of concurrency

What is “Multi-tasking”?

Wicklund says “a task is a software construct defining a segment of code that runs as an independent process or
function...” (Wicklund, 1982), so multitasking is where a number of tasks are executed in turn, rapidly enough so as
to appear to be running concurrently (or “in parallel”)

In this project | have pursued “closed” multi-tasking, where the only tasks are control tasks which is ideally suited to
an embedded system

Forth as originally devised by Charles Moore was multi-tasking, ran on a mainframe and supported a number of
users on the end of remote terminals. When it eventually morphed into figForth, the multi-user stuff was taken out,
but its original structure and architecture was not changed... This means that figForth is easy to multi-task®

Combining Pre-emptive with Co-operative multitasking

Multitasking modes do not have to be “either-or”; they can be combined very effectively. In Fig 204 is some legacy
Z80 code | wrote in 1988 to implement a simple pre-emptive multitasker on an interrupt being triggered at 60Hz by a
Clock/Calendar IC

This interrupt is too often (for efficiency) and so is divided by 12; so five times per second each subroutine in the
table SCHTAB is executed. This means that each subroutine is executed once per second. Four of them are dummies
for use later if needed. The first entry is a clock task which only sets a flag*

MMIRGT: PUSH AF
PUSH BC The MNon-Maskable Interrupt ("NMI") is being invoked
PUSH bE 60 times per second by a Clock-Calendar IC

PUSH HL
LD HL , HMICNT - -
DEC CHLY _... this is a bit too often for our purposes, so a counter
is used... and decremented on each interrupt. ..
LD A, CHLD
OR A . . .y - .
ap NZ, NMIRO2 i skip i not zero —/\LJ_ exit if the count is notzero...j

LD A,12 -
LD (HLY, A —qr__counter is zero, so reload the count__j

LD A, (SCHCNT)
PUSH AF We arrive at this point, 5 times per second (60/12)...
" 0 point, p (60112)... |

ADD A,
LD HL, SCHTAB
LD DE, O — . -
LD E, A ... we cycle through the entries in SCHTAB, executing each one in turn....
;‘gg :"; DE SCHCNT remembers where we are in SCHTAB for the next time through...
INC A
cP 5
R NZ, HMIRO3
LD A, 0 s -) ™
MMIROZ: LD (SCHCNTD, A Interrupt routines should do as little
ap (HLD - - processing as possible in the interrupt
NMIROZ: POP HL This task is _executed once per second ‘ path. This is because in this instance,
FOF DE and runs the internal time count... (clock) the use of the NMI makes this interrupt
POP BC path “atomic”; i.e. nothing can stop it
EE.PFN AR running until it exits, so it brings the
foreground system to a complete halt
SCHTAE: JR SCHL 3 CLOCK TASK until it is done. If this went on for any
R gg:% length of time, the foreground system will
IR SCHA Important: all it does in the interrupt become obviously unresponsive. When |
iR SCHS path is to set a flag then exit... use maskable interrupts, | am in the habit
scil: Lo HL, TASKS of dlsabllng_any further interrupts so
ET 0, CHL) : CLOCK TASK K these routines are also atomic...)
ap NMIROZ
SCHZ: P NMIRO2 ... these task slots are all "spare” so are "stubbed-out” and
SCHE : P MMIROZ merely exit the interrupt routine.... they can be used if required for
monitoring switches or led's, etc...
SCH4: P NMIRO2
SCHS: P NMIRO2

Image# 34 - Pre-Emptive Multitasking by using an Interrupt Routine
Image: Husband, 2011 based upon work done in 1988

% If you know how...
40 This flag just happens to trigger a co-operative task which performs the real work but only when other programs permit it to...

”

Simple “closed” multitasking to allow Objects/Code to “Background Execute

PAUSE: DI ‘
FUSH AF
PUSH HL TASKS EQU CBEYTE-1 i BIT 0 CLOCK TASK
Task LD HL, TASKS i BIT 1
priority oI T, G : gﬂ g ESCAPE
IR NZ, PALISL it i ;
BIT 0, [HLD lEmtdlfatas_ms i BIT 4 GEMERAL TASK
CALL NZ, CTASK already running.._. : Eﬂ é
BIT 1, (HL ;
CALL NZ,(F'TE\SK '_\‘-.; EIT 7 TASK RUMNING FLAG
BIT 2, [HLD
CALL NZ, ATASK
BIT 7, (HL } :
IR Nz,(Es?:,qu PAUSE is a CALL from any loop-like
BIT 4, (HLD structure which enables the tasker to
Sy ’;‘Z’CﬁBSK look at it's flags and execute tasks while
CALL Nﬁ, OTASK the foreground program is looping. ..
w EIT &, [HL]
CALL NZ, PRITSK
PAUSL: POP HL
FOP AF
EI) .
RET This task runs high-level Forth code. .
CTASK: SET 7, (HLD |
EXx
Ex AF, AF' | CLOCKT: WORD $+2
LD HL, TASKS WORD DOCOL Do
RES o, CHLD WORD TICKS i TICKS
LD BC, CLOCKT WORD LIT,24,EQUAL ;24 =
ap NEXT 2 . WORD ZBRAN,CLOCTL-$; IF
=——_ Jump into Forth.. WORD ZERO, ZERD i 0
FTASK: SET 7, CHLD WORD ®CLOC, DSTOR i CLOCK D!
aF NEXT 2 CLOCTL: ;i THEN
— L WORD DROF, DROP ; DROP DROP
ATASK: SET 7, (HLD To run this high- WORD LIT,CLOCK,DAT ; CLOCK D&
aF NEXT 2 level code WORD ONE,ZERG, DPLUS ;1 D+
WORD OCK,DSTOR ; CLOCK D!
ESCAPE: RES 3, (HL) WORD 5 RETURM
RES 7, CHLD N
CALL INTSET
EI
LD BC, QUITF
ap NEXT 2
GTASK: SET 7, CHLD RETURRM reverses what
B , CTASK did so system can be
Ex AF, AF ;
b HL . TASKS put back to how it was before »
RES 4, CHL) the task ran._. M RETURM: WORD 42
LD BC, (IMTCHR) LD HL, {RFP)
aF NEXT 2 THC HL
INC HL
OTASK: SET 7, (HLD LD (RPPJ, HL
i NEXT2 spare "dummy” tasks. EX AF, AF
PRITSK: SET 7, (HLD available if needed RES 7, (HL)
ap NEXT 2 RET
Image# 35 - Co-operative Multitasking by invoking a simple scheduler
Image: Husband, 2011 based upon work done in 1989
0004648 D5 WHPLISH: PUSH DE ~ =
000468 ES HPUSH: PUSH HL ;
00046C ©0 BS 02 NEXT: [CALL PAUSE The call o the co-operative
Q004 6F 04 MEXTZ® LD] multitasker ("PAUSE"} is inserted
Qa0470 Q3 INC BC into the Forth address threader
000471 oF LD L.A (inner interpreter) ("NEXT") so
Qo472 0A LD A, [BCD .
000473 03 THC B that the execution of every Forth
000474 &7 LD H, A word gives a background task the
000475 SE MEXT1l: LD E, (HLD chance to execute
Qo478 23 INC HL
000477 56 LD D, (HLD - -
000475 EB Ex DE, HL
000479 EQ ap {HL)

... code definifions containing a loop can have a CALL
PAUSE line inserted to allow tasks to run while idling
time waiting for something to happen. .

Image# 36 - Inserting a call to the multitasker into a high-level loop
Image: Husband, 2011 based upon work done in 1988. Z80 code based on the Intel 8080 figForth model

And this is from my recent work in ADL* mode on
& Image# 36 above..

the ez80", based upon my previous work as shown in Image# 35

0002AF F3 PAGSE: b1
0002B0O F5 PUSH AF
0002B1 C5 PUSH BC
0002B? D5 PUSH DE —_ Save all the registers I
0002B3 ES5 PUSH HL
0002B4 DDES PUSH IX [Fetch the Task Control Byte called "TASKS" |
0002B6 FDES PUSH TIY =
k If Bit 7 is set, there is a task
0002B8 Z21F7FF LD HL, TASKS already r‘fl[ming‘ so EXitl‘“
0002BB CB7E BIT 7, (HL) Otherwise Tpple hrough' to
0002BD 20 1C JR Nz, PAUSE1 ;TSKIp I task running
Because BIT 0 is tested 1st, it is the "top priority" task

000ZBEF 21FTFF LD HL, TASKS Bit 0 is set from the Ethernet Rx Pkt interrupt, so TASKO
0002C2 CB46 BIT 0, (HL) is called with a "long-call"
000z2Cc4 52C4 4A 04 01 CALL.IL N2z, ; Ethernet Packet Task

; (In Now test Bit 1, which is set from within

DO_CACHE in TASKO
0002C9 21F7FF LD HL, TASKS ARP_TASK is called with a "long-call’
0002CC CBAE BIT 1, (HL) Otherwise "ripple through" to test Bit 3.
0002CE 52C4 7C OB 01 CALL.TL N7, BRBJEBASK ; ARP Cache Freshness Task
; (In eZ80 ETHERNET .ASM)

0002D3 21FTFF LD HL, TASKS Finally, test Bit 3, which is set by testing the input stream
0002D6 CBSE BIT 3, (HL) from the serial port for 1B hex which is the escape key code
0002D8 C2 79 02 JP Nz,

The response to Bit 3 being set is to make a JUMP to
0002DB FDE1 PAUSEl: POP IY the ESC-KEY Task which does some housekeeping
0002DD DDE1 DO X then makes the Forth system perform a warm-start..
0002DF E1 Finally, restore POP HL More on the ESC-KEY
0002EQ D1 all the saved POP DE |Taskin further images...

registers,
0002E1 C1 re-enable the pOP BC

interrupts | devised this method about 30 years ago with no external input..
0002EZ F1 & return to the FOP AF It is fast, simple, small, versatile & VERY ROBUST...
0002E3 FB callee.. EI This is part of the core of an EVENT-DRIVEN SYSTEM !!
0002E4 C9 RET (And this is why | describe myself as an "Intuitive Engineer" !!)

Image# 37 - PAUSE - a simple, but very effective, co-operative multi-tasking mechanism...

When ESC-KEY is entered by jumping out of PAUSE,
HL is still pointing to TASKS
& there is a stackfull of preserved registers from PAUSE
plus interrupts are still disabled..

... plus, two of the Task Control bits are still set... So clear those.
The circular interrupt buffer for the serial port to/from the PC
Terminal Program is reset by resetting the "Putting-In pointer" &
the "Taking-out pointer"

Same for the Ethernet Packet buffer filled by the Ethernet Rx Pkt
000279 ESC KEY: interrupt...
000279 CBY9E RES 3, (HL)
00027B CBBE RES 7, (HL)
0002°7D 217FFF LD HL, CBUFF1 ; I lalise Console
000280 Z22E7FF LD (CB_PTR1) ,HL ; ffer pointers
000283 22E5FF LD (CB_PTRZ) ,HL
000286 5B21 00 00 OC LD.LIL HL,PktBuffer
00028B 5B22 FA FF 0B LD.LIL (PktBufInPtr),HL ; Initialise Packet
000290 5B22? FD FF 0B LD.LIL (PktBufOutPYt QuITP isthe address of a custom Forth word loaded

into BC which is the Forth VM's IP

000295 FB ET A JUMP to NEXT2 enters Forth's VM (a.k.a. "Inner
000296 01 64 02 LD BC, QUITP From h;?:ec:':lrfsrr‘l“traollki.saH”:rﬁlc:ﬁ: ;Zriif‘tﬂgystem..
000299 C3 31 09 JP NEXT?Z ’

This is the software equivalent to "kick-starting" a motercycle engine !!
Because it is "kick-starting” the Forth System by entering the Forth VM
& warm-starting from pure assembler...

Image# 38 - How the ESC-KEY Task transitions from pure assembler to the Forth VM. Part of the execution behaviour of
pressing the ""Esc'* key on the terminal is determined by ESC_KEY

4 ADL= "Address & Data Long" mode = 24-bit extended addressing and 24-bit extended data mode...
42 As described in the first 12 pages of this document...

So finally the move from pure assembler (via ESC-KEY) to entering the Forth VM...
QUITP is executed by the Forth "Inner Interpreter” or "address threader” NEXT
& leads to a Forth System warm-start via the Forth Outer Interpreter (Forth's

"SHELL") QUIT

A\ L

|
000264 6602 QUITP: Dw 5+2
000266 8D10 DW DOCOL
000268 ZBOD DW SPSTO
00026A F936 DW DEC
0002eC 2138 DW PDOTQ
00026E 080D0OA45 7363€¢170 DB 8,ACR,LF, "Escape"
000276 65
000277 3A02 DW QUIT

Image# 39 - How pure assembler, via ESC-KEY, transitions into the Forth VM via QUITP, which determines the final
execution behaviour of the ""ESC"" key with Forth words...

Appendix E. COMPLEXITY OR SIMPLICITY?

N

WHY CAN'T YOU
WRITE SERIOUS
PROGRAMS LIKE
WIGGINS HERE?

') (R

|

Conventional wisdom reveres complexity...

Image# 40 - Resist the Pressures - Reject Complexity...

Image: Based upon (Brodie, 1981, p. 67)

Charles Moore™® (the inventor of Forth) argues that the only way to develop & test effective software quickly is to
embrace simplicity...

"l despair. Technology, and
our very civilization, will get_
more and more complex until
it collapses. There is no
opposing pressure to limit

this growth.' [Moore]

Image# 41 - The Complexity Crunch
Image: Husband, 2011, based on Moore cited by Morris (2009)

Moore’s sentiments are echoed by the inventor of Pascal, Niklaus Wirth* (1971) in a seminal paper, citing Reiser:
"Software is getting slower more rapidly than hardware becomes faster..."

It should be recognized that the single most important
contribution towards a design’s reliability is the elimination
of superfluous features and facilities, and the containment of
its complexity.

—Nikdes Wirth

Image# 42 - Eliminate Complexity & Superfluous Features
Image: Based on (Aguilar, 1999) citing Wirth

Moore’s problem approach philosophy, developed in the 1960’s & reflected in Forth, echoes the modern fashion for
highly iterative Agile & Extreme Programming methods as a software development process (Frenger, 2001)

A further complication is that of a closed system’s disorder to increase over time. This is known as “entropy” and was
applied to software by Jacobson et al. (1992, pp. 69-70).

*3 |t would be a fair comment to say that Moore has a very well-founded “obsession” with the need to reduce and manage complexity. This
approach is echoed by Wirth (1971), Leveson (1995) & Flynt (2004) who devotes a large part of his book to addressing the many complexity issues
that arise during object-oriented software engineering... (And none of them are "Forth" people...)

* Wirth's Law - http://en.wikipedia.org/wiki/Wirth%27s law

http://en.wikipedia.org/wiki/Wirth%27s_law

Appendix F. AN EVENT-DRIVEN ENVIRONMENT

Embedded systems by their nature are attempting to model some clearly-defined aspect(s) of real-world behaviour®
which in turn could be characterised as being asynchronous and event-driven.
An event-driven architecture offers a number of advantages:

e Separation of Concerns*® — See Image# 43 below

e Event Processing logic can be separated from the application making it easier to extend or modify

e Changes in state can be responded to as they occur

e Event-based systems may be easier to scale

e When an event-driven system is coupled to message-oriented middleware (MOM)*, the systems can be
geographically separated

Event producers Event processing logic Event consumers

]

Data stores Applications

L]

Systems Applications

Sensors

- 3 ‘_}";
Business processes Business processes

Figure 1.5 The structure of an event processing application, showing the separation of event
processing logic from the event producers and event consumers

Image# 43 - The Structure of an Event Processing Application.
Image: (Etzion & Niblett, 2011, p. 14)

EVENT An event is an occurrence within a particular system or domain; it is
something that has happened, or is contemplated as having happened in that
domain. The word event is also used to mean a programming entity that repre-
sents such an occurrence in a computing system.

Image# 44 - The Definition of an “Event”
Image: Etzion & Niblett (2011, p.4)

Role of Multitasking (Time Multiplexing)

Multi-tasking plays a vital role in an event-driven architecture, acting as an event-producer and as an event-
consumer. | discuss this in detail in Multi-tasking (Time Multiplexing)

Multi-tasking also has a number of structural advantages when creating programs

Martin (2009, p. 178) puts it very well, saying it “... is a decoupling strategy. It helps us decouple what gets done from
when it gets done.... Decoupling what from when can dramatically improve both the throughput and structures of
an application. From a structural point of view the application looks like many little collaborating computers rather
than one big main loop . This can make the system easier to understand and offers some powerful ways to separate
concerns...”

* This modeling requires a number of different abstractions of the real world....
4 “Separation of Concerns” = “Division of Responsibility”

* Such as via Ethernet Packets and then out into the Internet, maybe to other similar systems or devices... This is the essence of “The Internet of
Things" See:

Appendix G. DEATH TO BuGs !!

A Zero-Tolerance Approach to Bugs

A technique I've always found to be very effective is that of development-driven testing or even test-driven
development where no bugs are tolerated; when one is found it is fixed immediately as part of the development
effort

This is in contrast to my many professional experiences in large software projects where most often a developer
never tests their own code but another engineer tests it, sometimes weeks later

No Broken Windows!
In the classic book The Pragmatic Programmer (Hunt & Thomas, 1999), the authors discuss the broken window
theory® and its relation to a concept of software entropy where small errors left unfixed breed additional errors....

There are many advantages to finding and fixing bugs early apart from the certainty that Butcher highlights (see
Image# 45 below); there is the knowledge that very few bugs, if any, exist if a zero tolerance policy to bugs is
followed — the “No Broken Windows” mindset as Butcher puts it

Project A

Done
Project B

| |

|
Done? Done? Done?

Time ———»

Image# 45 - Detecting & Fixing Bugs Early Provides Certainty
Image: Butcher (2009, p. 109)
Bugs Prohibited! — Pragmatic Zero Tolerance

Experience teaches us to avoid perfectionism as it is an impossible goal for a human to achieve, so a zero tolerance
policy towards bugs should be perfectionism tempered by pragmatism

P

\Iatalism Perfectionism

Pragmatic
Zero Tolerance

Image# 46 - A Mindset for Debugging...
Image: Butcher (2009, p. 113)

48 James Q. Wilson and George L. Kelling. "Broken Windows: The Police and Neighbourhood Safety," Atlantic Monthly, 1992
http://en.wikipedia.org/wiki/Broken window theory

http://en.wikipedia.org/wiki/Broken_window_theory
http://en.wikipedia.org/wiki/Broken_window_theory

Appendix H. TESTING & DEBUGGING

COMPLEXITY _ or SIMPLICITY ?

Image# 47 - Choose your tools carefully — When necessary create your own tools...
Image: (Brodie, 1981, p. 312)
| had intended to put quite a bit of testing & debugging detail here, but ended up doing the exact reverse !
See: Method#1 Method#2 Method#3 Implicit Test Scaffolding & Unit Testing & Method#4

See also: Death to Bugs !! & Static Analysis using "SPELL"

| am of the view that it is a BIG MISTAKE to allow your development project to be determined and/or driven by the
tools you have available !!

If the available tools are inadequate, MAKE YOUR OWN TOOLS !!
Any competent engineer should be able to make their own tools !!

This what | have had to do as detailed in this document, and it is not as daunting as it seems...

Appendix I. STATIC ANALYSIS USING ""SPELL"

The Forth Decompiler called "Spell" | have written is a very valuable tool to display and analyse the code produced
by Forth. Why would you want to do that? Well, part of Forth programming is creating new compilers, and a new
compiler will create new structures of some kind in memory, and you need to see if that is happening correctly...

For example, when | made a "black box" that controlled a scanning radio receiver, | had to write some words to
create memory arrays and scan arrays and to do that | had to write some memory band and scan band compilers...

In the example below, and purely as an example, | will use the Colon Compiler® to define a new word (“colon
definition”) called SQUARE and analyse its internal form by using the SPELL decompiler tool

: SQUARE DUP * ; |ok

SPELL SQUARE ver 0.12
OEELl C1 DB OC1H
NFA E300 86 Length-byte 0ER? EA OB "' LBOH
E301L 53 s 0EE3 BADE DW EXITOP-8
E302 31 Q OE85 910E COLON: Dw DOCOL
E303 55 U QEEY D412 DW QEXEC . PEXEC
E304 41 A 0EE9 BF1Z ODW SCSP . lcsp
E305 52 R QEBE 7917 DW CREAT . CREATE
E306 C5 E QESD 4013 DW RERAC 0]
LFA E307 <6 25 Link to VLIST 2413 D FSCOD : [;CODE)
CFA E309 |91 OE (D) %0E91|2AFBFF DOCOL: LD HL, (RFF)
PFA E30B |95 OC DUP B DEC HL
E30D |C1 19} = 0E9S 7O LD (HLD,B
E30F (OB OB| ;S 0E9S 2B DEC HL
OE97 71 LD (HLD,C
(E98 Z2FEBFF LD C(RPF),HL
, 0E9B 13 INC DE
Indirectly Q0E9C 4B LD C,E :
Threaded Code 0E9D 472 LD E,D (f)
consisting of a OE9E C3 53 07 JP MEXT
list of execution
addresses
(code field
addresses SPELL DUF ver 0.12
("CFA'S")
— NFA OC8F 83 Length-byte
35 f
U Tl
DO P (ii)
79 0C Link to 25WAP
97 0C Machine Code
ELl E5
OBOE B 1 DB EZ2H
0BO7 3 (IV) DB L
0BOE @3 DB 'S 4+B0H
OR0G PEDDA DW RPSTO-6 ver 0.12
0DOB SEMIS: DW $42
TEUD 2AFBFF LD HL, (RPPJ 81 Length-byte
0B10 4E LD €, CHL) AA N .
0B11 23 INC HL 96 19 Link to M/ (iii)
OB12 46 LD B, (HLD 91 0 ()
0Bl3 23 INC HL 80 19 m*
0Bl4 22FBFF LD (RPP),HL 36 0C DROP
0B17 C3 53 07 P NEXT 0B 0B ;s

Image# 48 - Using the Colon Compiler to create a simple definition & analysing the threaded code produced

Image: Husband, 2011, using keyboard activity, “SPELL” Forth Decompiler Tool & ¢Z80 code based on the Intel 8080
figForth model

The word : (“colon”) in (i) is a colon definition, as is * (“star”) in (iii)
The words ; (“semi”) in (iv) and DUP in (ii) are code definitions (“primitives”)

SQUARE is a very simple high-level colon definition, which takes a stack item, squares it (multiplies it by itself) and
replaces the result onto the stack

It does this by making a copy of the single stack item with DUP and using * (“star”) to multiply them together,
leaving the result back on the stack

* Forth contains a number of compilers (and interpreters) and new compilers and interpreters can be added as required...

Decompilation of the word SQUARE by SPELL exposes its threaded code internal form....

(1) NFA marks the start of the Name Field Address of SQUARE’s header

(2) LFA marks the Link Field Address used for threading the dictionary’s linked list

(3) CFA marks the Code Field Address which always points towards executable code (machine code)

(4) PFA marks the Parameter Field Address which is the start of a field of data which is interpreted by the code
pointed to by the CFA...

In the case of a high-level colon definition, that data is a list of the Code Field Addresses of the other words in the
high-level definition...

In the case of a primitive definition (code definition) the CFA points towards its own PFA (thereby complying with
“rule” (3) above; the PFA contains executable machine code

In the case of other kinds of definitions, such as constants, or variables, the PFA will contain data that will be
interpreted appropriately....

Appendix J. CONFIGURATION MANAGEMENT -
BASELINES & VERSIONING

In a previous life, when | sold multi-tasking Forth up-grades for home computers and then went on to sell "black-
boxes" that decoded data-over-radio, etc, | wrote a lot of software after designing the hardware...
(See: Past Products & Activities)

| always struggled with a particular aspect of the design/software engineering but | never really knew what it was°
and what form the solution might take...

Many years later, when | worked at Agusta-Westland in Yeovil, | was introduced to AllChange, ("A/C") a
configuration management tool/database® and much more™. It was "love-at-1st-sight"** and | have my own
personal licence... | am using A/C "straight-out-of-the-box" without using any scripting...

Meta Baselines

A "meta" baseline is a baseline® that contains other baselines...

So, in this case, my master meta-baseline is "FIG-FORTH_EZ80_R01" See Point 1 in Image# 49 below

The name of the master meta-baseline is "greyed-out" because it is a "virtual baseline" that can/will contain a
number of versions of itself... Why? Because all baselines change and this is a "change management" tool...

E};Allchange [Client Server] [Admin] - SM Live - [Browse Baselines]

#| File Part Workspace Baseline CR Reports Misc Function View Window Help

EERVEEIE) [zxee ram/s/o|ledlenrd| o a 1
Show last: [(al) =] Type: [(any)
Filter by: I(None) j Value: I (any)
Condition: I
| Name 2 | H | Locked | Date | Comment
- JRTH_EZ30_R0O1
FIG-FORTH_EZ30_R01;B001 Locked 12112017 12:52:26 Basic Build, Mo interrupts or buffers on UART, Base
FIG-FORTH_EZ80_R01;B002 locked 01/01/2018 14:04:52
= 4" FIGFORTH_EZ30_R01;B003 Locked 15/10/2018 15:18:39
1= _FIG-FORTH_EZSD_RD 1_DEV;BO03 Locked 19/10/2018 15:17:20 Top-Level Software Development Baseline for RO
E1 3P FIG-FORTH_EZ80_RO1_Sw-DEV_APP;B003 locked 19/10/2018 15:20:28
% FIGFORTH_EZ80_R01_SW-DEV_APP_BUILD;B001 locked 12/11f2017 13:07:40
FIG-FORTH_EZ&0_R01_SW-DEV_APP_OUTPUT;E002. Locked 01/01/2018 14:13:21
FIG-FORTH_EZ&0_RO1 SW-DEV_APP SRC;ED0Z| N Locked 19/10/2018 15:23:11
'8 FIG-FORTH_EZa0_R01_SW-DEV_PLATFORM;B001 locked 12/11/2017 13:13:06
FIG-FORTH_EZ30)_RO1_SW-DEV_CAD;BO01 Locked 12112017 13:19:44 Software Computer-pided Design
¥ FIG-FORTH_EZ80_RO1_SW-DEV_HLD;B001 locked 12112017 13:21:55 Software High-Level Design
FIG-FORTH_EZ30_RO1_SW-DEV_LLD;BOO1 Locked 12112017 13:23:35 Software Low-Level Design
- AFIG-FORTH_EZ8)_RO1_SW-DEV_SUP;B001 Locked 12112017 13:26:11 Support files
""" ;jl FIG-FORTH_EZ80_RO1_PLAM;BO01 Locked 12112017 12:56:51 Top-Level Planning Baseline for RO1
_ [3 FIG-FORTH_EZ80_R(1_TEST;B001 Locked 19/112017 10:06:24 Top-Level Testing/Verification Baseline for RO1
-2 F)_RO1_DEV
- 36 =
[] \:ﬁ E
B FIGFORTH EZ30 RO1 SW-DEV APP SRC |
I FIG-FORTH_EZ80_R01_SW-DEV_APH SRC;B001 locked 12/112017 13:17:45
I FIG-FORTH_EZ80_R01_SW-DEV_APH SRC;B002 locked 01/01/2018 14:11:56
% FIG-FORTH_EZ80_R01_SW-DEV_APH SRC;B003 locked 19/10/2018 15:23:11
% FIG-FORTH_EZ80_R01_SW-DEV_APA SRC;B004 locked 22/11/2019 14:02:30
% FIG-FORTH_EZ80_R01_SW-DEV_APF SRC;B005 Locked 05/12/2019 16:56:16
#FIG-FORTH_EZ80_RO1_SW-DEV_APH SRC;EODE 1 Locked 09/12/2019 13:37:43
ROl SyW-DEY APP SRC:BO0T I \f/ 11/02/2020 17:44:23

Image# 49 - The contents of the FIG-FORTH_EZ80 R01 Master (*'"Meta'") Baseline

I now realise that | was lacking the ability to perform and manage Configurations, Baselining, Versioning and implicitly, being able to perform Reversion, and
creating and preserving Design Archives...

Ethical Note: | am a happy, satisfied customer, who pays Intasoft in Exeter for an annual personal A/C License...
52

It is highly scriptable and the person @ Westlands who was responsible for it was "underemployed" and was happy to write scripts to implement "team management"
a:?d other "business" functionality... So | described the functionality and he wrote the scripts!

And we all know that feeling... !!

"a baseline is an agreed description of the attributes of a product, at a point in time, which serves as a basis for defining change. A change is a movement from this

baseline state to a next state. The identification of significant changes from the baseline state is the central purpose of baseline identification...”
https://en.wikipedia.org/wiki/Baseline (configuration management)

https://intasoft.co.uk/
https://en.wikipedia.org/wiki/Baseline_(configuration_management)

Having a "version" is a means of controlling and documenting change® within a baseline...

At the moment (while in the development stage) the baseline | am interested in is "FIG-FORTH_EZ80_R01_DEV" as
shown in Point 2 in Image# 49 above

This is the "DEV" metabaseline which contains a further 5 meta-baselines. | am interested in the first of these five;
"FIG-FORTH_EZ80_R01_SW-DEV_APP" as shown underneath Point 2 in Image# 49 above and this meta-baseline
contains another 4 baselines...

Out of those 4 baselines, | am working in "FIG-FORTH_EZ80_R01_SW-DEV_APP_SRC" as shown in Point 3°° in
Image# 49 above and it can be seen at Point 4 in Image# 49 above

In Point 4, it can also be seen that this baseline contains 7 locked”’ versions... V7 being the state of work as of the
11th February 2020... as seen in Point 5

What this means is that | am currently working on parts that have not yet been baselined®® into a "B008" version...
B007 ("Build 007") Baseline Contents

So, | am taking about baseline "FIG-FORTH_EZ80_R01_SW-DEV_APP_SRC;B007" as seen in Point 6 of Image# 50
below. And this IS NOT a meta-baseline as it contains REAL PARTS !!

%Allchange [Client Server] [Admin] - SM Live - [View Baselines - FIG-FORTH_EZB0_K
3 File Part Workspace Baseline CR FReports Misc Functon View Window Help

S5\ |ang g @ &R e | =

Baseline: IFIG FORTH_EZ80_R0O1_SW-DEV_APP_SRC;B0O07 I

Header | Text Details |Re|ationshi|:|s | Status Log |

Part ¢ | class | statu
=B (Implement/Src
-8 bebug
----- ' EMaC.5;004 Source
----- % EMAC1.5;002 Source
""" '.-fEMAC_REGS.S,'DM Source

----- 7 ETHERNET.S;002 Source
- eZ30_EMAC_PHY.ASM; 035 Source

""" - ezan ETHERNET.ASM; 023 Source
----- 1 e780_INTERRUFTS, ASM;071 | Source

----- ¥ eZ80F91.5;005 Source
= eZ30KERMEL.ASM; 023 Source
eZ30KERMS.5;010 Source
eZ30REGS.ASM;025 Source
eZ30SPELL. ASM; 006 Source
eZ305YSTEM. ASM; 073 Source
eZ30TOOLS, ASM;017 Source

- Fig_R01.wsp;033 Source
""" i-fFig_RDl.zdsproj,'DlD Source
""" '.-f Forth_MNew.ztgt;004 Source

Image# 50 - The contents of the Build 7 eZ80 Source Baseline

So, up to now, I've been using A/C in its browsing and viewing baseline modes. Turning to Image# 51, we now see a
parts view” of the A/C workspace...

The A/C Workspace | am concerned with is shown in Image# 51, Point 10 below... This is mapped onto my "P-Drive"
on my server®®. A/C refers to the folders below the top-level as "sub-systems" as in Point 11, and the selected sub-
system is shown in Point 9 and displayed on the right...

% A component of software configuration management, version control, also known as revision control or source control, Y is the management of changes to
documents, computer programs, large web sites, and other collections of information. Changes are usually identified by a number or letter code, termed the "revision
number”, "revision level", or simply "revision". https://en.wikipedia.org/wiki/Version control..... A/C calls it a "Version". Its naming format is determined by the user...
% Spot the omission! Baseline FIG-FORTH_EZ80_R01_SW-DEV_APP should contain BO07 of baseline FIG-FORTH_EZ80_R01_SW-DEV_APP_SRC *if* it were up-
to-date...

7 When a baseline is "locked" it is closed and cannot be altered...

58 _ " . . .
This is not a problem for me, but in a commercial environment, the current baseline would be defined 1st as part of the scoping of the work for that iteration... A/C can
be set-up to automagically populate and update the current baseline as team members check files out and then check them in again...

These different views are selected from the toolbar offering "File" "Part" "Workspace" "Baseline", etc. choices as shown in Image# 51, Point 8

60 . " i "
If I wanted to view that file structure and those files directly, | could use the "File" option... A/C is happy to work with any existing file/folder structures you may already
have. You can also have multiple workspaces and choose between them...

https://en.wikipedia.org/wiki/Software_configuration_management
https://en.wikipedia.org/wiki/Version_control#cite_note-Mercurial-1
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Version_control

L AliChange [Client Server] [Admin] - SM Live - [Browse Parts]
a File Part Workspace Baseline CR Reports Misc Function

EERNEYT I [FEE

Subsystem: |;"FIG-FDRTH_EZSDIDEVEIopﬂmplemenb’Src

indow Help

|lr@R| /0 @€«

Condition: I
Subsystems: IAIways j Versions: IComponent j FiIter:IAII j
== Name | Class | Date | Descriptio
7 baremetal.enginesr | - [Debug Subsystem 12/11/2017 10:23:42
[0 Comstrucion | Subsystem 12/11/2017 10:24:39
2 DA =2 Source 19/11/2017 11:32:09
H-[) Endnote @ B emac s Source 20/12/2017 21:01:07
-3 FIG-FORTH_EZ80 B3 EMAC_REGS.S Source 20/12/2017 20:11:44
=~ Develop -5 ETHERNET. S Source 19/11/2017 17:01: 28
B[HighlevelDesign -3 eza0 EMAC PHY.ASM Source 05/05/2019 14:43:42
E|L.J Implement =B -750 ETHERNET.ASM Source 04/12/2019 13:57:21
g) Headers 4 e750_INTERRUFTS. ASM Source 08/05/2019 07:33: 14
GJ src eZ80ETHERMET. AS Source 01/01/2018 13:12:05
LowlLevelDesign [ez0F9Ls Source 12/11/2017 10:25:26
[J Requirements - =7B0KERNEL.ASM Source 12/11/2017 10:25:26
(2 Support B3 eZBOKERNS.S Source 12/11/2017 10:25:26
B[Tools -4 £730REGS.ASM Source 12/11/2017 10:25:26
-2 Release B3 eZBOSPELL.ASM Source 01/01/2018 19:50:27
- Test - e7805YSTEM. ASM Source 12f11/2017 10:25:28
- Library - | ez80SYSTEM.Ist Source 09/12/201% 14:30:15
(2 Scanbase -4 £780TO0LS. ASM Source 30/11/2019 16:53:20
-2 Zileg B-# Fig_R01.wsp Source 01/01/2018 13:1%:06
B Fig_R01.zdsproj Source 01/01/2018 13:19:06
- Forth_Mew. ztat Source 12f11/2017 10:25:26
[]-"? Forth_Old. ztgt Source 12112017 10:25:26
B~ ©| GEMERIC_PHY.S Source 20/12/2017 20:11:45
-1 1051894 PHY.5 Source 2 11:45
B~ 1 K58721_PHY.S Source 20/12 11:45
- SPELL.ASM Source 12112017 10:25:26

TN aa e
Image# 51 - A ""Parts' view of current source development work...

Most of my work is currently being carried out in eZ80_INTERRUPTS.ASM, as shown in Point 13. The system needs

all the other files, so they are all checked-out, too (Point 16)

Versioning61
If I click on the "+" against the selected file as shown in Point 12, the display will open-up for that file and show all its
versions® See Image# 52 below

In this way, A/C keeps track of all the changes going on. The user chooses when to check-out and to check back in
again...

= - T T
- J5EZBIZJ_INTEF{R'.UPTS..E\SI'v‘I,'[2|69 Source 11/02/2020 11:28:58 KK
eZ80_INTERRUFTS.ASM;070 Source 11/02/2020 13:51:07 oS
eZ30_INTERRUPTS.ASM;071 Source 11/02/2020 16:32:15 XX
eZ80_INTERRUFTS.ASM;072 Source 16/02/2020 17:14:03 ARFP Cacheing & Packets seem to work ok now -- still crashes on 0.0.0.0 Source IP
e730_INTERRUPTS. ASM;073 10/03/2020 13:11:27 Ditto.... Fixed bug in 16-bit stack display..
eZ30_INTERRUPTS,ASM;074 10/03/2020 13:27:27 Ditto... Fixed bug in 24-bit stack display... @
""" 1 eZ30_INTERRUPTS,ASM;075 oLrce 16/04/2020 12:15:04
-] eZB0OETHERNET. ASM Source 01/01/2018 13:12:05 O.
- e750F01.5 Source 12112017 10:25:26
I:I-"? eZB0KERMEL. ASM Source 12/11/2017 10:25:26
-4 eZ80KERNS.S Source 12/11/2017 10:25:26
[]-"? eZB0REGS,ASM Source 12112017 10:25:26
I:I"'? eZB0SPELL. ASM Source 01/01/2018 19:50:27
[]-"? eZBDSYSTEM.ASP@ Source 12112017 10:25:26
&~ F ez805YSTEM.Ist Source 09122019 14:30:15
[]-"? eZB0TOOLS, ASM Source 30112019 16:58:20
- Fig_RO1.wsp Source 01/01/2018 13:19:06
% Fig_R01.zdsproj Source 01/01/2018 13:19:06
- Forth_Mew.ztgt Source 12112017 10:25:26
- Forth_old.ztat Source 12/11/2017 10:25:26
-] GENERIC_PHY.S Source 20 17 20:11:45
B~] 1C51894_PHY.S Source 20/12/2017 20:11:45
B~ K58721_PHY.S Source 20 7
e)

Image# 52 - A view of Parts Versioning...

61 . . . T . .) } -]

An important "side-effect" of versioning is that it provides visual proof of a development process as a counter to possible future patent or plagiarism claims...
62 P

These versions are created automagically as a result of the "checking-out, making changes, checking-in" sequences

Appendix K. "IN THE FLow"'

| am a VERY experienced, self-taught hardware & hardcore software engineer with an "Autotelic" personality...
When programming/testing | always aim to be "in the flow" ...

"Mihaly Csikszentmihalyi describes people who are internally driven, and who as such may exhibit a sense of
purpose and curiosity, as autotelic. This is different from being externally driven, in which case things such as
comfort, money, power, or fame are the motivating force. Csikszentmihalyi writes:

"An autotelic person needs few material possessions and little entertainment, comfort, power, or fame because so
much of what he or she does is already rewarding. Because such persons experience flow in work, in family life, when
interacting with people, when eating, even when alone with nothing to do, they depend less on external rewards that
keep others motivated to go on with a life of routines. They are more autonomous and independent because they
cannot be as easily manipulated with threats or rewards from the outside. At the same time, they are more involved
with everything around them because they are fully immersed in the current of life"

(High)

Challenges

(Low)

0 (Low) Skills (High) oo

Why the complexity of consciousness increases as a result of flow experiences

Image# 53 - The Flow Channel

https://en.wikipedia.org/wiki/Autotelic
https://en.wikipedia.org/wiki/Mihaly_Csikszentmihalyi
https://en.wikipedia.org/wiki/Curiosity
https://en.wikipedia.org/wiki/Motivation

Appendix L. PAST PRODUCTS & ACTIVITIES

Sure! More than 10 tasks
simultaneously and, in some
cases, up to 300 times faster!
That's what replacing the basic
ROM with the new FORTH does
forthe ZX81—and more!

The brains behind the
breakthrough belong to David
Husband, and he's building
Skywave Software on the strength
of it. Already orders are flooding
inand it's easy to see why.

The ZX81-FORTH ROM gives
you a totally new system. In
addition to multi-tasking and split
screen window capability, you
can also edit a program while
three or four others are executing,
schedule tasks to run from 50
times a second to once a year, and
with a further modification switch
between FORTH and BASIC
whenever you like.

‘Rmmorethn \

reNtASKS nd ,
ZXEI-FORIH ROM?7

\

The ZX81-FORTHROM gives
you a normal keyboard with a 64
character buffer and repeat, it
supports the 16k, 32k, 64k RAM
packs, itis fig-FORTH compatible
and it supports the ZX printer.

The price, too, is almost
unbelievable. Asa "fit it yourself
Eprom”, complete with manual,
it'sjust £25+ VAT
Add £2 p&p UK (£5 Europe, £10
outside Europe) and send your
order to the address below.

SOFTWARE

David Husband
73 Curzon Road, Bournemouth,
BH1 4PW, ENGLAND.
Tel: (0202)
International +44 202 #12 1HE

Image# 54 - Advert for the Multitasking ZX-81 Forth ROM
Image: (Husband, 1984)

1984 - Multitasking ZX81 Forth

The revolutionary ZX81 computer by Clive Sinclair came out in 1981 and quickly sold in large quantities. Sinclair
claimed (rather tongue-in-cheek) that you could use it to control a power station. It was based on a Z80 running at
about 2 Mhz. It had an 8k basic

| sold a replacement for the internal Basic ROM that converted the ZX81 into a multitasking Forth machine. It could
even run overlapping multitasked windows which was rather revolutionary at the time because it was some time
before Microsoft came out with Windows 3.0 which did the same thing on a PC

1985 - Multitasking BBC Forth-83

What the competition
hasn't been waiting for.

Latest version of Forth for the BBC /

(Is not rehashed Forth 79 Code)\
Multi-tasking operating system
_—"forReal-Time use.

16k Eprom type 27128

for ©

Unique Stack Display Utility—__ | SOFTWARE
[MULTI- FORTH 83

Here's the Forth Eprom for the BBC Micro that makes all others ~ extensi Manualﬂ?'Op ges plus)and at £45+VATitis superb value.

out of date. Order it using the coupon adding £2.30 p&p(£5 for Europe, £10
[t's Multi-Forth 83 from David Husband who has built his outside) or if you want more information, tick that box instead. Either

reputation for Quality Forth products with his ZX81-Forth ROM, way, it will put you one step ahead of the competition

Spectrum Forth-1/0 Cartridge and now New Multi-Forth 83 for the BBC NS IS DI I SN . E—

Micro. Thisis not rehashed Forth 79 Code, but a completely new Please send me Multi-Forth 83 for BBC Micro. £45+VAT. De-luxe System inc. Disc £80+ VAT

version of the Forth 83 Standard. It's unique in that it Multi-tasks, and Cheques to Skywave Software Readers’ A/C (or enter Visa No) m

therefore the user can have a number of Forth programs executing 1 ; ‘ | i l‘ | Ii] | l ‘

simultaneously and transparently of each other MultiForth 83
Multi-Forth 83 sits in the sideways ROM area of the BBC along Name T kg1 Forth RO

with any other ROMs in use. Itis compatible with the MOS, and Address —Iif:ec'.f.jrnKFo‘r;h—‘Uia"nrjm

specially vectored to enable asystem to be reconfigured. It contains a I ‘ - S

Please send me more information

Standard 6502 Assembler, a Standard Screen Editor, and a Unique — e
Stack Display Utility.)) ___ Postcode _ SI{UWEUD
With this Forth, David Husband has provided the BBC Micro with | SUBJECT TO AVAILABILITY FORI.O 0.5 ONWARDS.

capabilities never before realised. And being 16K rather than 8K is gendtospneve soltnare, 3o oasowreroutn. - SOFTWARE
twice the size of other versions. Multi-Forth 83 is supplied with an [FS = = -

MULT1-FORTH 83 FOR THE BBC MICRO

Image# 55 - Advert for the Multitasking BBC Forth 83 ROM
Image: (Husband, 1985)

This Forth was sold as a plug-in eprom for the BBC computer and as a ROM Cartridge for the Acorn Electron

SM2™is designed to be upgradable, and will run many
different radios with just a change of software and connecting
leads. It will accept Plug-In Boards to further expand its
power and usefulness. Once you have used SM2™ you will
wonder how you ever used a Scanning Receiver without it 1!

Powerful Activity Reports
Over 1300 Memories
Clock/Calendar (Lithium)
Versatile Lockouts
Output for Databases
(Comma Delimited)
Powerful Scheduler
Assign Remarks

Low cost, easy to use
Sophisticated Logging

User Friendly Commands
Large Memory + Battery
Remote/Unattended Use
Parallel Printer Port
Status Indicator Panel
Many Search Bands
Tape Recorder On/Off
Extensive User Manual
Takes Plug-In Boards
P.C. Upload/Download

Many more features !! Ask for more information.
SM2"™is supplied complete with connecting leads and a software
package fitted to drive one the following Scanning Receivers:
AR3000 AR2002 CHASE IC-R7000 IC-R9000 FRG9600
(Upgrades are available from time to time)
How to Order: (Specify type of Receiver & Computer)
Send Cheque, Bank Draft, or Mastercard/Access/Visa No. &
Exp. Date. Official Orders accepted from Govn't, Education,
Large Co.s, etc.
Special Price...£249.99
Delivery: Ex Stock, subject to availability

28 Day Money-Back Guarantee if not entirely satisfied.
Life-Time Service Guarantee (Subject to conditions)

L I M I T E D e
—

E= magm Street, Portland, Dorset
DT5 1JQ, England
Phone: (0305) S0

o0 00O OOOOPS

Overseas
Agents Wanted

A NEW TOOL FOR A NEW TECHNOLOGY

S CaInaSOer

Spectrum Planning? Surveillance? Management?
Activity Monitoring? System Engineering?
Why not upgrade your Scanning Receiver with the
New SCANMASTER ™Il Controller?

Scanmaster ™l is a "black box" which plugs into the Remote Socket on your Scanning Receiver and takes over
control of the Radio. No programming is required to use SM2™as it has its own powerful commands to perform
Searching, Memories, Remarks, Logging, Activity Reports, and many other things. It generates INFORMATION and
you can control what sort and how. This information can be uploaded, downloaded, printed, stored, etc. You talk
to SM2™with a Terminal via an RS232 Serial Port. This would usually be ANY Computer running a simple
terminalfcomms program. Anything to or from the terminal is automatically stored in spare memory, backed with a
lithium battery, and can be viewed at any time, even if SM2™has been turned off for a while. SM2™ uses the latest
microprocessor technology and is designed to be User Friendly. SM2™ has its own Clock/Calendar with a lithium
battery so it keeps the date/time even when turned off. SM2™ has a powerful Scheduler so that jobs can be set up
to run on a certain date/time, at date/time intervals, for a date/time duration, or for a number of times. SM2™ runs
from 12v D.C. and is ideal for vehicle or portable use. It is LOW-COST so every Radio Engineer should have one!

Scanmaster ™Il Plug-in Boards

SM2™is able to take extra internal plug-in boards & software
packages to further expand its power and usefulness. All
boards except ROMCARD™ contain their own operating
software and will work with any of the main SM2™software
packages thereby allowing the various boards to work with
any Scanning Receiver supported by us.

Available Now...

ROMCARD ™enables SM2™to hold up to 8 different soft-
ware packages so that SM2+ROMCARD can drive up to 8
different Scanning Receivers with only a change of connect-
ing leads. Upon performing a cold start, SM2™is able to
detect if ROMCARD™ is fitted and if g0, it displays all the
software packages fitted on ROMCARD™ on a menu for
user selection. Supplied with one software package and set
of connecting leads for £49.99

Software available for:

AR3000 AR2002 CHASE IC-R7000 IC-R8000 FRG9600

Available Soon!!
TONECARD ™is able to Decode & Encode a variety of
signalling tones including DTMF, SELCALL, CTCSS &
FFSK. (MPT 1317, etc) and also decode and action signalling
protocols such as TRUNKING (MPT 1327, etc), JRC Band,
BANDIII, etc. SM2+TONECARD can drive a transceiver if
you want. SM2+TONECARD can control more than just
Scanning Receivers!

JRC ROM ™ is an optional software package for TONE-
CARD and is tailor made to support the new JRC Band
signals used by the Gas & Elect. Co.s. Many powerful
features for diagnostic and engineering uses.

CELLCARD™ contains the same modem/filter chipset
asa cellular telephone and SM2+CELLCARD™ can decode
the signalling protocols used on the UK TACS system and
optionally, the AMPS system. It can decode data and com-
mands and can do channel hopping and other things.

CELLCARD™ can be used as a powerful diagnostic tool and

is available to AUTHORISED USERS ONLY !

SCANMASTER™I ??
The Oid Original, still going strong and still available for the

AR2002, IC-R7000 & FRG9600
for only £153.26

Image# 56 - Advert for the Scanmaster 11 Scanner Controller
Image: (Husband, 1990)

SELCALL . CTCSS . DTMF . FFSK . MPT1327

Tools for Radio
Engineers

Only
£699

Plus VAT

A New Tool for a New Technology

Scanmaster™ decodes & encodes
SELCALL, CTCSS, DTMF, FFSK &
TRUNKING. Scanmaster™ will drive
and control most popular scanning
receivers including R7000, FRG9600
AOR3000/A, AOR2002 and CHASE.
Engineers can communicate with
Scanmaster™ using any computer or
Laptop, running a standard terminal
program via an RS232 Port.
Scanmaster™ operates on a 12v DC
supply making it ideal for use in all
workshop, vehicle or field locations.

Scanmaster™ is a powerful, yet User
Friendly low-cost diagnostic tool that will
enable engineers to select, monitor and
generate systemftraffic activity and load
information using the inbuilt commands
that perform functions including -:
Searching - Memories - Logging
Remarks - Activity Reports
Scanmaster™ incorporates a lithium
battery that ensures all information and
schedules are automatically stored in its
own powerful memary with Date/Time
logging to assist in detailed analysis.

Scanmaster™ will support the new
JRC and Water Industry Trunking
Schemes as standard, including
Scottish Power (Bona-fide users only)
Scanmaster™ has many more
features; far too many to list here and
carries a Lifetime Service Guarantee.
Delivery:- Ex-stock subject to
availability.
ORDER NOW!!
Call or fax for more information.
Versions for CELLULAR & PAGING
coming soon!!

Scanmaster -

m.gm Street, Portland, Dorset. DT5 1 JQ Tel 0305 A&l Fax 0305 HEDTES

Image# 57 - Advert for the Scanmaster 11 Professional Communications Decoder

Image: (Husband, 1991)

Mobile monitoring tool

Tiunking English™ again,
thig time a BCAST Sysdef
5, which is inviting radic
units o sample signals on
adjacent control channels,

This is quite a useful message
because it tells us the channal
numbers of adjacent control

This is the systern idantity
code of the site sending the
whole sequence of

channels and the sys id of the meszages (*a frame®),
adjacent nodes,
™
AL\I\Im(itation to|0/0_DumpyNvia 14578 ity Cotne 2t o

|BCA§T 5 Vote Now

¢n Ch B9]jvia’ 14584

ALH'Tnvitation to |0/0 DummyI via 14578

adjacant nodes on the
channel numpers

[BCAST 5 Vote Now|jon Ch 93|[via 14472

maentioned.

ALH Invitation to 0/0 Dummyl via 14578

IBCAST 5 Vote Now|ion Ch B89]/via 14584

ALH Invitation to 0/0 DummyI via 14578
ALH Invitation to 0/0 DummyI via 14578

This annotated extract from a Scanmaster display illustrates signalling on a time-shared controf chamed in & public utility
radlio system. The unit has been set to hige all information other than the idling frames

A POWERFUL diagnostic tool for engi-
neers and technicians who install or
maintain complex radiocommunica-
tions systems has been developed by
the Dorset firm Seanmaster Products.

The microprocessor-controlled
Scanmaster anit connects between a
scanner receiver (four common types
are supported) and a laptop computer
terminal, to provide intelligent control
of the receiver. The whole system can
be battery powered, for use on site as
well as in the workshop.

At its simplest, the Scanmaster unit
enables the operator to select and
monitor a radie channel by typing in
the channel number: there is no need
to remember the exact frequency
because the Scanmaster can caleulate
it from a programmed-in translation
table. Keyboard short-cuts can be used
for stepping channels up or down.

But the system can go much further
than this, using plug-in cards to decode
information from the receiver’s audio
coutput and act upom it. The
“Tonecard™, for example, decodes MPT
1327 data messages on trunked radio
channels, revealing precisely what is
happening on the network, When a call
is sel up, the user can make the receiv-
er switch from control channel to traf-
fic channel and back, manually or auto-
matically, so that the progress of the
call can be tracked in detail.

Included in the Tonecard are
decoders for CTCSS, Selcal, DTMF and
DCS. Plug-in roms can be added to
adapt the card for proprietary systems
or specific radio schemes — examples
are the water industry’s and the fuck
and power s, Other cards have
been developed for cellular and paging
applications; they stack together so that
several are available at once.

A feature of the screen display is what
David Hushand, the system’s designer,
calls Trunking English. In place of the
raw hexadecimal codes of the MPTY 1327
messages are plain phrases. By
reading them as they seroll up the
screen, the user can read and under-
stand the signalling in real time.

For diagnosing problems, the card
can be reconfigured in moments so
that it displays only the message groups
of interest. The terminal software can
capture this output in a computer file
for further study.

“The engineers haven’t got anything
like this, and they need it desperately”,
said Mr Hushand, who claims that the
£700 Scanmaster has capabilities not
available even on £20 000 test sets, He
adds that it is also valuable ns a train-
ing aid. Scanmaster is available direct
from the manufacturer to bona fide
users only,

4“ MOBLE ANE CRHIIAR MAY 1993

Image# 58 - Review of MPT1327 Decoding by the Scanmaster 11
Image: (Husband, 1993, p. 40)

