
David Husband, M.Sc in IT, Baremetal Engineer Extraordinaire

What you see detailed on my CV are "merely" the things I have done to earn money...

In reality, my abilities, knowledge and capabilities range far beyond my CV..

I am a BAREMETAL ENGINEER and what is in this document showcases a small part of my baremetal engineering...
I have an embryonic website on the subject here: http://baremetal.engineer/

The purpose of that web site1 is to expose and document some of what I have spent many years doing so that,
hopefully, young engineers can & will learn from it !!

In http://baremetal.engineer/baremetal.blockchain.engineer.pdf I showed my recently acquired blockchain
knowledge, including my analysis of how Blockchain can be applied to embedded IoT systems.

In http://baremetal.engineer/baremetal.hardware.engineer.pdf I showed how electronic hardware has not changed
in essence over the last 60 years or so, due to being based upon the principles of physics established hundreds of
years ago. I showed how, counter-intuitively, electronics hardware was actually easier now due to ever increasing
integration and increasing functionality...

I also have extensive radio-communications knowledge and ability2 (having been a licensed radio amateur since
1973); having successfully designed, manufactured, and sold worldwide, a range of products to decode various kinds
of data transmitted over radio... And I know what an SDR is! https://en.wikipedia.org/wiki/Software-defined_radio

See these sample images: Image# 56, Image# 57 & Image# 58

To be brief here, I have created a number of Appendices where I go into further detail on particular topics3

In this document, I present an extract of what I have been doing over the last six months or so, which is designing,
writing and testing some low-level hardware interrupt drivers and tasks in assembler ("machine code") to enable
the use of the Ethernet interface on Zilog's eZ80 System-on-a-Chip using Zilog's eZ80F91 development platform...
See Image# 1 below. The purpose of this document is to "showcase" a sub-set of my skills and abilities4...

This is not trivial because the eZ80's Ethernet Media Access Controller ("EMAC") is a very complex peripheral which
has to communicate with the Ethernet outside world via a complex Ethernet Physical Interface ("PHY")

Given the complexity of both these interfaces/devices, it takes a great deal of skill and persistence to get them
working correctly from "scratch" on any system... (See Complexity or Simplicity?)

See: http://baremetal.engineer/eZ80F91_EMAC.pdf & http://baremetal.engineer/New_PHY_ICS1894-40.pdf

Image# 1 - The Zilog eZ80F91 (eZ80F910300KITG) Development Board

Interrupts and the associated Tasks I get them to generate, are implicitly An Event-Driven Environment, & rather
hardware-centric

The EMAC part of the eZ80 has 8k of fast DMA RAM, 4k for receiving packets and 4k for transmitting packets...

1
 You will see from that URL that my skills & abilities do not extend to scripting web pages !!

2
 I am currently setting up my own satellite transmitting/receiving terminal to use the new Geostationary QO-100 Amateur Radio Transponder

 https://amsat-uk.org/satellites/geo/eshail-2/ Web-SDR for QO-100 at Goonhilly: https://eshail.batc.org.uk/nb/ https://eshail.batc.org.uk/wb/
3
 I've recycled some images, explanations, etc, from my Master's Dissertation from around 2011-2012...

4
 And my recent work described here with the eZ80's EMAC, starting by implementing & testing low-level TCP/IP layers such as the Address Resolution Protocol

("ARP") and the associated ARP Cache, are totally new knowledge for me & indicate my on-going ability to acquire & apply new knowledge & skills...

http://baremetal.engineer/
http://baremetal.engineer/baremetal.blockchain.engineer.pdf
http://baremetal.engineer/baremetal.hardware.engineer.pdf
https://en.wikipedia.org/wiki/Software-defined_radio
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Medium_access_control
https://en.wikipedia.org/wiki/PHY#Ethernet_physical_transceiver
http://baremetal.engineer/eZ80F91_EMAC.pdf
http://baremetal.engineer/New_PHY_ICS1894-40.pdf
https://amsat-uk.org/satellites/geo/eshail-2/
https://eshail.batc.org.uk/nb/
https://eshail.batc.org.uk/wb/

The EMAC internally handles the "dirty work" of the basic Ethernet frames and their checksums and creates a
"descriptor table" for each received packet so a number of house-keeping tasks are performed. Initially an EMAC
register is loaded with the MAC address ("Hardware Address") of the host and enabled to generate an interrupt
upon the reception of a Broadcast Packet and/or a packet addressed to the hardware address the EMAC has been
setup with...

The EMAC also needs to be told what packet "block size" to work to and I have chosen to use blocks of 256 bytes...
So if an ARP Packet is received, its size is always 64 bytes which the EMAC reads into a 256 byte block in its DMA
RAM and then generates an interrupt...

Other packets such as TCP/IP packets with a type of 800 hex can vary in size, up to 3 or more 256 byte blocks before
an interrupt is generated...

The EMAC Rx 4k DMA packet buffer is a recirculating buffer which needs to be processed as quickly as possible.
What I do is to read each received packet into my own recirculating Packet Buffer of 64k of Ram and then generate a
buffer reading task and then exit the Rx Packet interrupt service routine...

The interrupt service routine needs to be as fast and as short as possible and to do the very minimum required.
Generally, just to read the appropriate data into a circular RAM buffer, and maintain a "putting-in" buffer pointer,
manage any registers associated with the interrupt and set an "interrupt buffer processing" task (which will, in due
course be run in the background, outside of the interrupt path) ...

Tasking in a closed system, i.e. where the task binding is early and is at compile time can be very simple and robust...
I use just ONE BYTE called "TASKS" to hold pending tasks and a routine called "PAUSE" to manage and execute tasks.
The size of PAUSE is only 54 bytes so it is compact and FAST... It is not able to be optimised !!

The use of PAUSE within The Forth Virtual Machine ("VM") and other looping structures is described in more detail
here: Multi-tasking

So, although the work described is in eZ80 assembler, it is done within a modified FIG-Forth model/environment.
See The Forth Paradigm

Forth is an extensible Interactive Compiler where the act of programming to solve a problem is to extend the word-
set of the language... Invented by Charles Moore

Image# 2 - The Forth approach to programming. Image: Husband, 2011, based on Ting (1989, p. 10)

So to put it another way, a problem is solved in Forth by extending the Forth word-set in contrast to C or all other
high-level languages which force you to fit the problem into the word-set and to the syntax5 of the language being
used...

Now let's turn to the subject of how I test and develop my code... Over the years, I have devised a system that
leverages some of the unique aspects of developing/testing code on a Forth System...

This my variation of TEST-DRIVEN DEVELOPMENT and based upon The Forth Paradigm...

When I am developing in assembler, I do this in at least three ways which are all perfect examples of what the right-
hand side of Image# 47 is showing !!

Method#1
For my first example, I will describe how I started testing the ARP Cache...

Ethernet nodes on the network transmit "ARP Requests" as Broadcast messages because the TCP/IP protocol
encapsulated within Ethernet packets uses its own 32-bit IP addresses, whereas an Ethernet network uses 48-bit

5
 Syntax creates nasty unintended consequences; the more elaborate the syntax, the more error checking that can be done, but the more

human errors that will be flagged – the programmer then becomes a slave to the compiler; the problem is the arcane, arbitrary, and cryptic
syntax of most languages, which must accommodate all of the intended [future] applications; that makes the compiler much more elaborate....
My emphasis; based on (Biancuzzi & Warden, 2009, p. 65) citing Charles Moore, the inventor of Forth

http://www.forth.org/literature.html
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/Charles_H._Moore
https://en.wikipedia.org/wiki/Test-driven_development

"Hardware Addresses" a.k.a. "MAC Addresses" and sending an ARP Request is the only way to establish the
mapping between the two addressing systems... An ARP Cache is employed to greatly reduce the number of ARP
Requests so as to reduce network load...

I decided that as my setup was for a very small network, to set the ARP Cache size at 32 elements, with each
element having 11 bytes. See Image# 3 below...

My next step was to create a Forth word called "ARP_CACHE" which is invoked from the Forth System by merely
typing its name and pressing "Enter"... See Image# 4 below...

When the system is running with the Ethernet cable connected to my Netgear Ethernet Switch, packets are
automatically received and decoded in the background by the EMAC Rx Packet Interrupt handler, EmacRxIrq, which
triggers a task, TASK0, which executes after EmacRxIrq has finished and calls DO_CACHE to manage the ARP Cache...

ARP_CACHE is used after a test run of the system with the Ethernet cable being disconnected (See Image#
15 Point 1) after sufficient packets have been captured. There is more on this in Image# 4 above, the latest
version of Forth test-word ARP_CACHE has been run and is presenting the expected results... In Image# 5 above, a
capture from an earlier version of ARP_CACHE is shown, displaying a number of bugs in DO_CACHE..

(1) Duplicates are being saved... This is to be expected as the ARP_CACHE test-word was written before the full
functionality was implemented in DO_CACHE... Test Driven Development !!

(2) One of the items is showing an IP Address of 0.0.0.0 -- I thought this might be a bug in my s/w, but I Googled and
found it was known as a "Gratuitous ARP Request" but opinions varied and none accounted for the 0.0.0.0 IP
address, so I decided to filter it out entirely...

The ARP_CACHE word is relatively simple for me, so I did not expect it to have any bugs... However, I did see a
"feature" so I swapped the order in which the Cache data was presented (Image# 5) so that there would be no
"ragged edges" displayed as seen in Image# 5 below

This tests if DO_CACHE is extracting the ARP Request's "Source IP Address" and "Source Hardware Address" and
then storing them correctly in the ARP Cache's 32x11 byte memory array...

Image# 3 - The source code for defining the ARP Cache array I decided to implement

So in Image# 4 below, ARP_CACHE is showing the correct operation of the ARP Cache. It should be noticed that the
Ethernet Node 90:B1:1C:78:68:82 is miss-configured to IP 169.254.43.10 !!

At an earlier stage in the testing & development of DO_CACHE, that miss-configuration was causing DO_CACHE to
enter an endless loop... It suited my purposes not to fix the miss-configuration at that point because it was a good
test of my subsequent bug-fix !!

Summary:
Method#1 is also a form of static-testing, where perhaps you run the test-word before the software-under-test
("S.U.T"), and/or you run it afterwards and analyse the results... You then fix any bugs and re-run the test !!

Image# 4 - The new Forth test word ARP_CACHE in action !

Image# 5 - An earlier version of ARP_CACHE running showing a number of bugs !!

Method#2
This where you embed calls to a number of test-displays which display appropriate internal information, state, etc,
while the "software-under-test" is running... I show an example of this below...

This is done by making a call to a debugging display routine, in this case, ETH_DEBUG, as shown in Image# 7 below...
This is done from CACHE_LOOP as shown in Image# 6 below with the A Register just before the call containing a
value that determines which ETH_DEBUG routine is invoked as appropriate to suit the calling program. See Points
2,3,4 below

Whether or not ETH_DEBUG does anything is controlled by the state of the bits in CONTRL, (Point 5) so early in the
development/debugging cycle, ETH_DEBUG can be enabled and then later can be disabled6...

At present, the bit position in the A Register determines which Ethernet Debugging Display is executed, and there is
no way to select which ones are or are not, in the same way that the bits of CONTRL can be manipulated. This will be
updated in later iterations

Image# 6 - How CACHE_LOOP invokes ETH_DEBUG...

Image# 7 - How ETH_DEBUG decides which display to use... (It tests the A Register)

So the code in ETH_DEBUG in Image# 7 above (Points 6 & 7) "ripples through" testing the contents of the A Register.
Jumps to ETH_DE_END shown at Point 8 above invoke a "common stub" that currently just displays some
information common to all the debugging display calls...
This can be seen in operation in Point 11 of Image# 9 below...

The advantage of doing it this way means the debug display calls in CACHE_LOOP above never need to change!

6
 Given that the intention is to place all of this into the public domain so that young engineers can learn from it, it would be useful to be able to turn-on or off the

debugging displays as they show useful learning/operational information, too... (So the intention is to leave it in permanently, but allow it to be controlled from the k/b)

Image# 8 - Initial Power-up of the system

The MAC_ID ("Hardware Address") shown just above in Image# 8 - Step 2, is written into the six-byte EMAC Station
Address Register to identify the node and the software also associates the IP address in Step 2 with the node

Between Steps 4 & 5, I have connected the Ethernet cable into my network switch (Image# 15) and packets are being
received by the EMAC and the Ethernet Rx Interrupt is now processing packets correctly...

This can be seen in Image# 9, step 6, where the Ethernet header is decoded and it is known to be an ARP Request
Packet, and where its contents are decoded in Step 7

Image# 9 - Decoding the 1st ARP Request Packet

The information we are wanting to store in the ARP Cache is the Source Address and the Source IP Address as this is
the mapping that needs to be buffered in the cache to avoid extra Ethernet traffic. This is known at Step 8 where
DO_CACHE is called. DO_CACHE enters a 32-iteration loop starting at CACHE_LOOP (the start of which is seen in
Image# 6)

At Image# 9, step 11 above, is the debugging display produced by the code at label ETH_DE1 of Image# 7 above...

So the techniques described here in Method#2 are ideal for debugging real-time event-driven assembler code within
a Forth interpretive environment

Method#3
This can be used from assembler or high-level Forth code... I normally us it in a "crash-and-burn" mode, where I
invoke it from my "point-of-interest", it captures what I want it to, and then goes into an endless loop (effectively
"crashing the system") and then I can analyse the data it has captured and compare it against my expectations of the
code behaviour...

The debugging tools provided as part of the ZDS-II IDE by Zilog are not really adequate for debugging a virtual
machine, as they seem to be more suitable for debugging "C" Programs, and no surprise as Zilog supplies a C
Compiler as part of its free development support for its eZ80 system

Given that the Forth system uses a simple Virtual Machine ("VM") and indirectly-threaded code, I had to write my
own debugger7 to be able to support this kind of operation...

The eZ80 has two modes of operation -- a 16-bit mode which is "classic" Z80 and an extended 24-bit mode, and Zilog
support this operation by having "extended" versions of "classic" Z80 registers, apart from the AF register...

It is not "either/or"; there is a mixed-mode of operation that I use, and so whether a register, say DE, appears as 16-
bit register DE or as the 24-bit register DE.L will depend upon the code context, i.e. they are the same registers.
See Image# 10, Items 11 & 12 below, and Items 9 & 10

The only exception to this are the two stack pointers which are separate and independent registers because there
are two separate and independent stacks. You have the classic Z80 16-bit stack pointer in Item 1 and then there is an
extended stack pointer for a second, 24-bit stack in Item 2

Because Forth is a stack-based system, what all the stacks contain is of interest during debugging and so these are
exposed as seen in Items 3,4 & 6 See also The Importance of the Forth Stack

Because the Forth I use is indirectly-threaded, the contents of a memory location pointed to by the contents of a
register is of interest...

Image# 10 - The 24-bit Debugger, ADL_REGS

The Importance of the Forth Stack
The Forth Stack is fundamental to the whole operation of Forth and is available interpretively to the user keyboard.
It is used to pass values ("parameters") to and from Forth words and is therefore known as the "Parameter Stack"
and is shown above in Image# 10 as the "P-STACK". It is 16-bits in size and is actually the microprocessor's stack8

The Parameter Stack operates implicitly from the keyboard because of the simple parsing behaviour of Forth's
"Outer Interpreter"9 QUIT

The Simplicity (& power) of the Parser10
Forth works in any number base11, and it defaults to base 10, so when you type a number as a text string and press
"Enter", the parser looks up that text string in the Forth dictionary12. If it does not find it in its dictionary, it tries to

7
 Not quite as daunting a task as it may seem!

8
 Another powerful, implicit debugging feature!

9
 Forth's "Shell", of which you could have more than one! https://en.wikipedia.org/wiki/Shell_(computing)

10
 https://en.wikipedia.org/wiki/Parsing

11
 Providing you can represent the symbols in ASCII!

12
 A singly linked-list containing about 95% of Forth

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Parsing

convert it from a number text string into an integer number13 according to the number base. If it is successful, it
places that number onto the Parameter Stack. If unsuccessful it flags an error. (See Complexity or Simplicity?)

Implicit Test Scaffolding & Unit Testing
Given what I said about the stack in the previous section, it must therefore be obvious that Forth is inherently
capable of Test Scaffolding and Unit Testing. This is something I am very mindful of when I am developing &
debugging code! I know that I can feed my new Forth words with various values to perform testing!

Given Forth’s interactive & modular nature, test scaffolding is easy to implement, most times just involving entering
a word (from the keyboard) with the correct stack contents and then observing the execution behaviour of the word
and its subsequent effect upon the stack. If necessary, text can be output to the debug console and/or the register
dump utility used, both to provide further information to analyse

Method#4
I use a high-level Forth decompiler ("SPELL") I have developed as a powerful static code inspection/analysis tool,
mainly for when I write new compiler words so that I can see if it is creating the code I expect it to create...
See: Static Analysis using "SPELL"

My Attitude to bugs
My approach is to test and debug while developing using the methods described above and not to allow bugs to

fester !! See: Death to Bugs !!

Back to other languages!
As shown in Image# 11 below, a typical C (or C++ or even Java) application sits on top of the language
implementation which in turn sits on top of the operating system which sits on top of the hardware...

Image# 11 - A Typical C Application

Image: Husband, 2011, based on (Taivalsaari, 2003, p. 10)

Programming the C application consists of writing routines by invoking the various commands available within the
syntax (rules) of the language; in the case of C by defining, declaring and using functions and variables...
Arguments are used to communicate data between functions

 The C language is responsible for communicating to and from the operating system and/or the host hardware. The
application must direct everything via the C language it is written in (and within its fixed, complex syntax)

In C, the operating system, the hardware and any associated data are
therefore purposely hidden from the application and the programmer!!14

Other languages work the same way

The Forth application architecture is shown below in Image# 12. Programming an application in Forth is radically
different to how you operate in other languages..

13

 This will be either a 16-bit fixed-point binary number or a 32bit double fixed-point binary number...
14

 And therein lies the real problem... Any high-level language that hides the operating system, the hardware and any associated data from the user (and the

application) is not ideal for the programming and/or testing of Embedded Systems. Forth does none of these things - quite the opposite!

“Forth is a computer language with minimal syntax. It features an explicit parameter stack that permits efficient
subroutine calls. This leads to postfix expressions (operators follow their arguments15) and encourages a highly
factored style of programming with many short routines sharing parameters on the stack” (Biancuzzi & Warden,
2009, p. 60) citing Charles Moore

“One doesn’t write programs in Forth. Forth is the program. One adds words to construct a vocabulary that
addresses the problem. It is obvious when the right words have been defined, for then you can interactively solve
whatever aspect of the problem is relevant” (Biancuzzi & Warden, 2009, p. 66) citing Charles Moore
(My emphasis)

Image# 12 - How Forth is more than just a Virtual Machine.

Image: Husband, 2011, Based on Taivalsaari (2003, p. 10)

The "Classic" Forth Embedded Model

Image# 13 - A Typical "Classic" Embedded Forth System (Now outdated)

Image: Husband, 2011

This was the relatively very simple FIG-Forth model promoted very successfully in the early 1980's by the Forth
Interest Group ("FIG"), and although it is still a valid system, it has very limited uses nowadays and would be
completely useless to implement any Internet of Things devices16...

The "New Model" eZ80 Embedded Forth System
I am sure we are all familiar with how most embedded systems work nowadays with their user-interface operations
being based upon talking to them via an Internet browser program and their support for various USB devices...

15

 In English we say "Red House"; in French they say "Maison Rouge" -- "House Red".... Reverse Polish Notation is quite a straightforward way of operating and

makes quite a few things much easier... Remember: Complexity or Simplicity?
16

 Because it has no USB or Network Connectivity, either Ethernet or Wi-Fi

So, "talking to them via an Internet browser program" all sounds so simple and straight-forward, but is technically
quite complex... Your embedded system needs to run as its own website, serving or "pushing" dynamic web pages
over an Ethernet interface via the HTTP & TCP/IP protocol17,

The system outlined in Image# 14 below is the system I am working towards at the moment18.

Image# 14 - A "New Model" eZ80 Embedded Forth System

Because the Evaluation Platform ("EP") contains hardware & software Ethernet support via a PHY interface and an
internal EMAC, I am concentrating upon implementing as much functionality as I can using the EP

Given the difficulties in prototyping SMD-based devices, I am inclined to design my own "development expansion
platform", connecting to a short ribbon-cable that would plug-in to the "spare pins" interface shown in Point 11 of
Image# 1 & Point 10 of Image# 15 below... It would be used to implement the hardware functionality of a USB
interface as shown in Point 3 of Image# 14 above... And maybe even a CAN Bus interface...

USB, by its very nature is quite complex and at an early stage, design decisions19 must be made.
The MAX3421 USB Peripheral/Host Controller which interfaces to an SPI interface is my favourite, but for a product
development platform, you'd want two USB interfaces using the MAX3421 controller, because you might well
want/need to implement a Host USB and a Peripheral USB

Last but not least -- Configuration Mgt - Another VITAL Software Engineering Management Tool !!
I now use AllChange to manage my configuration management as an integral part of my software development &
testing process... See: Configuration Management - Baselines & Versioning

Summary
This document and the other referenced *.pdf's are intended to supplement David Husband's CV to
showcase/highlight some of his extensive experience, knowledge and abilities...

© 2020 David.Husband@baremetal.engineer, All Rights Reserved Created: 19/08/2020 Updated: 26/11/2020

 All personal information is subject to the new Data Protection Act 2018 & the General Data Protection Regulation (EU) 2016/679
("GDPR")(which remains in force until the end of the transition period on 31 December 2020 & then goes into UK Law) & is used under licence

17

 However, that would still be very difficult to develop, test and debug without running a terminal program on the RS-232 serial port !!
18

 And the practical work IS ALWAYS "FROM THE BOTTOM UP" - even though the design may be from "the top down"...
19

 For instance, is my USB interface going to be a peripheral or a host?

https://datasheets.maximintegrated.com/en/ds/MAX3421E.pdf

Appendix A. EZ80 - DEVELOPMENT & TESTING SET-UP

Image# 15 - The Zilog eZ80F91 Development Board Set-up using Zilog's eZ80F910300KITG Platform

Like all manufacturers, Zilog supply a development kit for the eZ80 which comprises of quite a substantial system on
a circuit board along with an expansion interface on a 0.1" matrix20

See Image# 1 for a much bigger view of this board...

This board is quite "resource-rich" by Forth standards21...

A naked eZ8022 has 8k of fast static RAM only, with 256k of slower internal Flash ROM. Internal hardware support is
"luxurious" with two UARTs, parallel I/O, I2C, SPI, Ethernet MAC, Configurable "Chip Selects", "ZBUG" debugging
interface with JTAG functionality if needed, low-power standby modes, 32.768KHz driven RTC, etc...

The eZ80 is externally clocked via a 5MHz source and there is an internal PLL multiplier which clocks the eZ80 at a
maximum of 50MHz. The eZ80 "horsepower" is reckoned to be 80 MIPS @ 50MHz compared to the 4MHz Z80's I
used in the past which were rated at 0.58 MIPS @ 4MHz23

If you look at some of the comparative figures in Footnote 22, below, Zilog seem to have engineered the eZ80 well...
If it could be clocked @ 100MHz, it would return 160 MIPS against the ARM Cortex-M3 with 125MIPS @ 100MHz

The current Zilog eZ80 development platform I am using is Zilog's second version...

There is 256k of internal eZ80 flash on both dev boards which defaults at 00-0000 hex to 03-FFFF hex
On the New Dev Board, CS024 has 8MB of flash starting @ 14-000025 & ending @ 93-FFFF running with 7 wait states
On the New Dev Board, CS1 has 1MB of ram starting @ 0C-0000 & ending @ 13-FFFF with 1 wait state
And another 1MB of ram on CS2, starting @ 04-0000 & ending @ 0B-FFFF with 1 wait state

Referring to Footnote 20 below, Forth itself does not require anything like these resources26 to run applications well.
Referring to Image# 14 and to the "New Model" system I am working towards, the extra Flash would hold the HTML
pages that would serve the browser over the Ethernet interface; the ram for the same reason and for data buffering.

20

 0.1" matrix is always a bonus because prototyping hardware is much easier with 0.1" matrix parts, although they are becoming increasingly rare nowadays... Unless

you have an extensive prototype surface mount workshop, and production/rework facilities, etc, it is not a practical proposition to perform prototype work at the S.M.D.
level... You need S.M.D. skills, too!
21

 I have quite happily run a "Classic" Forth system (see Image# 13) on the basic eZ80 within 8k of internal eZ80 Ram and in about 9k of Flash Rom out of 256k...
22

 But you have to be careful! There are a number of eZ80 versions... I use the fastest, most resourceful version, but it must be understood with these kind of SoC

devices, that each pin may well share a number of functions and you must choose which you want -- you cannot have them all!
23

 Intel 8086: 0.33 MIPS @ 5 MHz, Intel 286: 1.28 MIPS @ 12 MHz, NEC V20 (ran 8086 code - I used it!): 4 MIPS @ 8 MHz, Intel i386DX: 2.15 MIPS @ 16 MHz,

4.3 MIPS @ 33 MHz, ARM7: 40 MIPS @ 45 MHz, ARM Cortex-M3: 125 MIPS @ 100 MHz
24

 CS0 = Chip Select 0
25

 I am able to determine the mapping of all these values along with the number of wait states and the type of memory interface as all the Chip Selects are configurable.

This is a BIG PLUS-POINT for the eZ80...
26

 These resources are purely to support the use of Zilog's ANSI C Compiler to run apps in C (They need this much to run!)... And that should tell you a great deal!

https://en.wikipedia.org/wiki/Instructions_per_second#Timeline_of_instructions_per_second

So, referring to Image# 15 above, here are some notes against each point highlighted:

(1) I am using this to control the Ethernet packets going to the Dev Board, by plugging and unplugging at this point
rather than doing it at Point 7 so as to avoid "wearing" out the socket @ 7

(2) Is the "PC Style" DB9 pin-out serial port which goes to my PC running the "Tera Term" terminal program and
linking at 115,200 bauds

(3) This is a "pseudo" RS-232 port over an USB link using one of the FTDI UART-to-USB devices. I don't currently use it

(4) This is the Zilog "ZDI" debugging interface that connects to the Zilog USB Pod (5) supplied with the development
kit

(6) This is the USB lead from the pod that connects to a USB port on my PC and interfaces to the ZDSII Integrated
Development Environment ("IDE"), part of which is featured below in Image# 16

(7) Is the Ethernet lead connecting to (1) and then goes on to the Ethernet Port on my PC

(8) & (9) As labelled

(10) Is the expansion bus interface containing a number of useful27 signal lines...

(11) Is the 5v power in. Alternatively, I could power it via the USB connection at (3)

Image# 16 - A Fragment from Zilog's ZDSII Integrated Development Environment

In Image# 16 above, is a fragment from the ZDSII IDE which Zilog supply free to support the use of their various eZ80
flavours and their ZDI debugging pods. These allow the ZDSII IDE to download and program the internal eZ80 flash
and any external flash, and to perform various generic debugging tasks associated with breakpoints and single-
stepping...

When you start using these tools from assembler programs, you very quickly become aware that the real intention is
for them to support the "C Compiler" which I am sure they do really well...

Also there are a number of serious bugs in the Assembler, and I can see from the Release Notes for the occasions
when Zilog performs updates and bug fixes that Zilog's efforts are directed towards fixing bugs that the "C Compiler"
throws up. This leads me to believe that most users are using the "C Compiler"... None of this is a problem for me!!

27

 And omitting a number of useful signal lines... The J10 connector has 64 pins, but all 32 of the even pins go to 0v -- what a waste when the I
2
C lines and a number of

other lines (like the pins for the RTC backup) should be on J10...

Appendix B. THE FORTH PARADIGM
Forth was conceived and developed on mainframe computers by Charles Moore and his associates28 towards the
end of the 1960’s and throughout the 1970’s. During the 1970’s Forth was ported to a number of microprocessors by
members of the Forth Interest Group (FIG, 2007)

“Charles Moore is one of the greatest software developers29. The 'Forth' language he invented is still in use today,
particularly by NASA, and has never been bettered for instrumentation and process control. He still argues
persuasively that the only way we can develop effective software quickly is to embrace simplicity. Like Niklaus
Wirth, he remains a radical whose views have become increasingly relevant to current software development..”
(Morris, 2009) (My Emphasis)

Image# 17 - Extensibility is a major Forth feature

Image: Based on Moore (1981, p. vii)

The Forth language invented in the late 1960’s is one of computing’s best kept secrets... Widely used but little
known….

Forth is highly reflective, which means that most of Forth is written in itself. See "The Forth Virtual Machine"

It is a fast, compact, modular, reflective, re-entrant, object-based, extensible, untyped, stack-based, interactive,
threaded interpretive, incremental compiler (and operating system); ideally suited to efficient software development
and debugging (Frenger, 2001; Simon, 2009) and to driving and controlling all kinds of hardware (Colburn, Moore &
Rather, 2011; Pigott, 2006; Simon, 2009)

In fact, the way you “program” an application in Forth is to create word definitions to extend the Forth language set..

Due to the modular and interactive characteristics of Forth, the development methodology is very close to Extreme
Programming (“XP”)

Image# 18 - Charles Moore: Keep it Simple! (Hooker, n.d; Leveson, 1992)

Image: Based on Moore (1981, p. vii)

“Forth is a design language. To the student of traditional computer science, this statement is self-contradictory. 'One
doesn't design with a language, one implements with a language. Design precedes implementation...' Experienced
Forth programmers dis-agree. In Forth you can write abstract, design-level code and still be able to test it at any time
by taking advantage of decomposition into lexicons30. A component can easily be rewritten, as development
proceeds, underneath any components that use it. At first the words in a component may print numbers on your
terminal instead of controlling stepper motors. They may print their own names just to let you know they've
executed. They may do nothing at all. Using this philosophy you can write a simple but testable version of your
application, then successively change and refine it until you reach your goal"
(Brodie, 2004, p. 31)

28

 Elizabeth Rather, Leo Brodie, Kim Harris...
29

 Also rather a clever hardware engineer (now a multimillionaire) who holds very valuable patents on a number of fundamental microprocessor innovations (MMPP,

2007). See: http://spectrum.ieee.org/at-work/innovation/qa-with-moores-ip-manager or Google “Moore Microprocessor Patent Portfolio”
30

 One meaning of lexicon is "a set of words pertaining to a particular field of interest" (http://www.thefreedictionary.com/lexicon)

http://spectrum.ieee.org/at-work/innovation/qa-with-moores-ip-manager
http://www.thefreedictionary.com/lexicon

Develop from a Prototype (with little planning)
Moore and Brodie take their approach further so that the various processes become a method of problem-oriented
solution thinking... In essence:

Image# 19 - Develop from a Prototype

Image: Based on (Morris, 2009)

There are some advantages in this approach – you very quickly create a working application prototype of some kind
to show your stakeholders and then you can develop this prototype31… Run on prototype hardware too, until/while
“real” hardware platform is being designed/developed… However, the analysis of the problem and the initial starting
design must be sound...

The Forth Modus Operandi
The Basic Idea

Forth is expressed in words and numbers and is separated by spaces, i.e.:

HAND OPEN ARM LOWER HAND CLOSE ARM RAISE

These commands may be typed directly from the keyboard or edited onto mass storage and loaded

All words, whether included with the system or user-defined, exist in the “dictionary”, a singly linked list

A “defining word” is used to add new words to the dictionary. One defining word is : (pronounced “colon”), which
is used to define a new word in terms of previously defined words. Here is how one might define a new word called
LIFT

: LIFT HAND OPEN ARM LOWER HAND CLOSE ARM RAISE ;

The final ; terminates the definition. The new word LIFT may now be used instead of the long sequence of words
that comprise its definition

Forth words can be nested like this indefinitely32 and writing a Forth application consists of building increasingly
powerful definitions, such as this one, in terms of previously defined words

Implicit Calls

To execute (or “run” or invoke) the word LIFT for instance, you don’t have to say CALL LIFT you just type

LIFT or it is encountered in the input stream and is invoked

Implicit Data Passing

Passing data in Forth is implicit and is achieved via Forth’s Parameter Stack, which in most implementations is the

microprocessor’s stack. However, there are no PUSH or POP operations in high-level Forth

The implications of Implicit Calling and Implicit Data Passing

As data is passed implicitly, we are relieved of the act of passing data to and from our code, leaving us to
concentrate upon the functional steps of the data’s transformation

Passing data via a stack has the advantage that words can nest within words, because any word can put numbers on
the stack and take them off without upsetting the flow of data between words at a higher stack level33. In this way,
the stack supports structured, modular programming while providing a simple mechanism for passing local
arguments

Forth eliminates from our programs the details of how words are invoked and how data is passed
What does that leave? Only the words that describe our problem...

Having words, we can fully exploit the recommendations of Parnas (1972):

31

 Contrary to other development methods where the initial prototype may/will be discarded
32

 And Forth's Return Stack automagically keeps track of this nesting...
33

 Provided that the word doesn’t consume or leave any unexpected values...

 "to decompose problems according to things that may change, and to have each module consist of many small
functions, as many as are needed to hide information about that module"

Forth allows us to write as many words as we need, no matter how simple they may be

Programming with Components

Having a large set of simpler words makes it easy to use a technique that Brodie calls “component programming”

He defines a component as “the smallest set of interacting data structures and algorithms that share knowledge
about how they collectively work...” (Brodie, 2004, p. 20)
In reality, they are just a collection of well-chosen and well-designed Forth words...

A component represents a resource which can be a piece of hardware such as a UART, or a software resource such
as a queue or an object, and all components will involve data objects and algorithms

Brodie calls the Forth words that make up the component, the “Lexicon”. The design of the lexicon is very important
as the essence of a Forth application is the creation of the appropriate problem-solving set of words as an extension
to the core set of Forth words

Image# 20 - An example Forth Application’s Lexicon & associated Component

Image: Based on (Brodie, 2004, p. 22)

Forth is word-based, so a real Forth application consists of a number of words all working together to provide a
functionality set. These words represent the various components defined, identified and documented during the
analysis and design process... See Image# 21 below

Image# 21 - The Entire Application Consists of Components represented by Lexicons

Image: (Brodie, 2004, p. 23)

Problem-oriented Solution Thinking

Brodie suggests nine phases to this problem-oriented solution thinking activity:

Image# 22 - The Nine Development Phases

Image: Based on (Brodie, 2004, p. 38)

Iteration - The Scientific Method

This is what drives all the efforts behind the project and as described by Harris (1981) is based upon the scientific
method, which is itself iterative, being ...

Image# 23 - The Scientific Method.

Image: Based on Brodie (2004, p. 39) citing Harris (1981)

The Iterative Approach to Development

Image# 24 - An Iterative Approach to Development

Image: Husband, 2011, modified
34

 from Brodie (2004, p. 39) citing Harris (1981)

34

 ... by adding “+debug” to “Test Program” stage... That was a serious omission....!!

The Iterative Approach to Analysis
Referring to Image# 24 above, Brodie breaks down the “Analyse Problem” phase into an-other iterative cycle, shown
below in Image# 25

Image# 25 - An Iterative Approach to Analysis.

Image: Brodie (2004, p. 48) citing Harris (1981)

Start with the Simplest Solution & Few Constraints

Image# 26 - Develop with very few initial constraints

Image: Brodie (2004, p. 40) citing (Harris, 1981)

The Importance of the Conceptual Model of the proposed Solution

It must be self-evident that if the conceptual model of the solution is incorrect and/or deficient then the whole
project may not be viable...

The Conceptual Model *is* Forth...

As far as the software is concerned, the application is not “written in Forth”; Forth is the application. The language is
extended as required, to contain word sets (“Lexicons”) which describe and implement the chosen functions and
solutions

Some Tips when Developing the Conceptual Model:

Image# 27 - Tips for Developing the Conceptual Model

Image: All points from Brodie (2004, pp. 48-65)

Appendix C. THE FORTH VIRTUAL MACHINE

What is a "Virtual Machine" ("VM") ?

It is “an ‘abstract’ computing architecture or computational engine that is independent of any particular hardware or
operating system….” (Taivalsaari, 2003)

A virtual machine can be extremely powerful. It need only exist in somebody’s mind…
The classic VM is the product of one of computing science’s greatest minds; Alan Turing’s 1936 thought experiment,
now known as the “Turing Machine”. (Turing, 1936)

Image# 28 - A modern online Java representation/implementation of a Turing Machine

Image: Husband, 2011, based on: Schweller (2003)

Moving forward in time to 1968, legendary computer scientist, Donald Knuth published the seminal series of books
called “The Art of Computer Programming”

His work featured an imaginary virtual machine called “MIX” (See Image# 29 below) and its accompanying MIX
assembly language35

Subsequently a number of high-level languages have employed a VM internally to avoid platform dependence and to
isolate programs from hardware details. There are other reasons... See Image# 30 below

As Taivalsaari points out in Image# 31 below, the Forth VM is very simple36; I would characterise it more as a “Virtual
Microprocessor”....

35

 A man who was not afraid to use assembly language...
36

 Surprise! Surprise!

Image# 29 - Knuth’s MIX Virtual Machine

Image: (Knuth, 1997, p. 126)

Image# 30 - Languages that use Virtual Machines

Image: (Taivalsaari, 2003, p. 13)

Image# 31 - Forth is an “interesting” VM...

Image: (Taivalsaari, 2003, p. 30)

In Image# 31 above, Taivalsaari's last comment is: "Ideal for embedded systems (if the awkward syntax37 is not
exposed to the end user..." I do not agree with his personal opinion...

He is from Finland38. He clearly did not like (or take to) Reverse Polish! (as he says the Finnish equivalent of "Red
House", so reverse polish will instinctively feel strange to him)..
Footnote 36 repeats what I said in Footnote 13 earlier...

The Forth Virtual Machine Registers

A virtual machine must have virtual machine registers to hold the data that it works with...
figForth’s are shown Image# 32 below, along with how they are mapped to real eZ80 registers

Image# 32 - Forth VM Registers mapped to eZ80 Registers (Typical mapping)

Image: Husband, 2011, based upon (Ting, 1989, p. 27)

Inner Interpreters (a.k.a. "Address Interpreters")

Ting (1986, p. 52) takes a wide (and very insightful) view of Forth inner interpreters, saying that they “are a set of
execution procedures, usually in the machine code of the host computer, which execute various Forth words by
processing the information stored in their parameter fields. The address of such a procedure is stored in the code field
of a word definition. Forth definitions of the same class have the same address in their code fields. Two major inner
interpreters are used to process code definitions defined by machine instructions and colon definitions defined in
terms of other existing Forth words…”

I am not convinced that there are two code interpreters as Ting claims;
I only see one and I see the other as a (re-)entry point to the address interpreter...

37

 In English we say "Red House"; in French they say "Maison Rouge" -- "House Red".... Reverse Polish Notation is quite a straightforward way of operating and

makes quite a few things much easier... Remember: Complexity or Simplicity?
38

 In English we say "Red House"; in Finnish they say "Punainen Talo" ("Red House"), where "House" = "Talo" and "Red" = "Punainen". I rest my case... Q.E.D.

Image# 33 - Some Inner Interpreters (Address Interpreters) implemented on various microprocessors

Image: Husband, 2011, based upon some work done since 1983 based on the figForth models. Zilog ZNEO based upon

work by Rodriguez (2006)

A number of “other minor inner interpreters are used to process constants, variables, user variables and other types
of data and structures” (Ting, 1986, p. 52)

I like the way Ting perceives these Forth words as separate Interpreters (and Compilers) because that has enhanced
my own understanding of them...

Appendix D. MULTI-TASKING (TIME MULTIPLEXING)

The Role of Multitasking in an Event-Driven Architecture

Multi-tasking is vital to implementing an event-driven architecture as it allows each event to have its own task or
task handler and to execute as if it were an independent module or thread...
Multi-tasking generates the illusion of concurrency

What is “Multi-tasking”?

Wicklund says “a task is a software construct defining a segment of code that runs as an independent process or
function...” (Wicklund, 1982), so multitasking is where a number of tasks are executed in turn, rapidly enough so as
to appear to be running concurrently (or “in parallel”)

In this project I have pursued “closed” multi-tasking, where the only tasks are control tasks which is ideally suited to
an embedded system

Forth as originally devised by Charles Moore was multi-tasking, ran on a mainframe and supported a number of
users on the end of remote terminals. When it eventually morphed into figForth, the multi-user stuff was taken out,
but its original structure and architecture was not changed... This means that figForth is easy to multi-task39

Combining Pre-emptive with Co-operative multitasking

Multitasking modes do not have to be “either-or”; they can be combined very effectively. In Fig 204 is some legacy
Z80 code I wrote in 1988 to implement a simple pre-emptive multitasker on an interrupt being triggered at 60Hz by a
Clock/Calendar IC

This interrupt is too often (for efficiency) and so is divided by 12; so five times per second each subroutine in the
table SCHTAB is executed. This means that each subroutine is executed once per second. Four of them are dummies
for use later if needed. The first entry is a clock task which only sets a flag40

Image# 34 - Pre-Emptive Multitasking by using an Interrupt Routine

Image: Husband, 2011 based upon work done in 1988

39

 If you know how...
40

 This flag just happens to trigger a co-operative task which performs the real work but only when other programs permit it to…

Simple “closed” multitasking to allow Objects/Code to “Background Execute”

Image# 35 - Co-operative Multitasking by invoking a simple scheduler

Image: Husband, 2011 based upon work done in 1989

Image# 36 - Inserting a call to the multitasker into a high-level loop

Image: Husband, 2011 based upon work done in 1988. Z80 code based on the Intel 8080 figForth model

And this is from my recent work in ADL41 mode on the eZ8042, based upon my previous work as shown in Image# 35
& Image# 36 above..

Image# 37 - PAUSE - a simple, but very effective, co-operative multi-tasking mechanism...

Image# 38 - How the ESC-KEY Task transitions from pure assembler to the Forth VM. Part of the execution behaviour of

pressing the "Esc" key on the terminal is determined by ESC_KEY

41

 ADL= "Address & Data Long" mode = 24-bit extended addressing and 24-bit extended data mode...
42

 As described in the first 12 pages of this document...

Image# 39 - How pure assembler, via ESC-KEY, transitions into the Forth VM via QUITP, which determines the final

execution behaviour of the "ESC" key with Forth words...

Appendix E. COMPLEXITY OR SIMPLICITY?

Image# 40 - Resist the Pressures - Reject Complexity...

Image: Based upon (Brodie, 1981, p. 67)

Charles Moore43 (the inventor of Forth) argues that the only way to develop & test effective software quickly is to
embrace simplicity...

Image# 41 - The Complexity Crunch

Image: Husband, 2011, based on Moore cited by Morris (2009)

Moore’s sentiments are echoed by the inventor of Pascal, Niklaus Wirth44 (1971) in a seminal paper, citing Reiser:
"Software is getting slower more rapidly than hardware becomes faster..."

Image# 42 - Eliminate Complexity & Superfluous Features

Image: Based on (Aguilar, 1999) citing Wirth

Moore’s problem approach philosophy, developed in the 1960’s & reflected in Forth, echoes the modern fashion for
highly iterative Agile & Extreme Programming methods as a software development process (Frenger, 2001)

A further complication is that of a closed system’s disorder to increase over time. This is known as “entropy” and was
applied to software by Jacobson et al. (1992, pp. 69-70).

43

 It would be a fair comment to say that Moore has a very well-founded “obsession” with the need to reduce and manage complexity. This

approach is echoed by Wirth (1971), Leveson (1995) & Flynt (2004) who devotes a large part of his book to addressing the many complexity issues
that arise during object-oriented software engineering... (And none of them are "Forth" people...)
44 Wirth’s Law - http://en.wikipedia.org/wiki/Wirth%27s_law

http://en.wikipedia.org/wiki/Wirth%27s_law

Appendix F. AN EVENT-DRIVEN ENVIRONMENT

Embedded systems by their nature are attempting to model some clearly-defined aspect(s) of real-world behaviour45
which in turn could be characterised as being asynchronous and event-driven.

An event-driven architecture offers a number of advantages:

 Separation of Concerns46 – See Image# 43 below

 Event Processing logic can be separated from the application making it easier to extend or modify

 Changes in state can be responded to as they occur

 Event-based systems may be easier to scale

 When an event-driven system is coupled to message-oriented middleware (MOM)47, the systems can be

geographically separated

Image# 43 - The Structure of an Event Processing Application.

Image: (Etzion & Niblett, 2011, p. 14)

Image# 44 - The Definition of an “Event”

Image: Etzion & Niblett (2011, p.4)

Role of Multitasking (Time Multiplexing)

Multi-tasking plays a vital role in an event-driven architecture, acting as an event-producer and as an event-
consumer. I discuss this in detail in Multi-tasking (Time Multiplexing)

Multi-tasking also has a number of structural advantages when creating programs

Martin (2009, p. 178) puts it very well, saying it “... is a decoupling strategy. It helps us decouple what gets done from
when it gets done.... Decoupling what from when can dramatically improve both the throughput and structures of
an application. From a structural point of view the application looks like many little collaborating computers rather
than one big main loop . This can make the system easier to understand and offers some powerful ways to separate
concerns...”

45

 This modeling requires a number of different abstractions of the real world....
46

 “Separation of Concerns” = “Division of Responsibility”
47

 Such as via Ethernet Packets and then out into the Internet, maybe to other similar systems or devices... This is the essence of "The Internet of

Things" See:

Appendix G. DEATH TO BUGS !!

A Zero-Tolerance Approach to Bugs
A technique I’ve always found to be very effective is that of development-driven testing or even test-driven
development where no bugs are tolerated; when one is found it is fixed immediately as part of the development
effort

This is in contrast to my many professional experiences in large software projects where most often a developer
never tests their own code but another engineer tests it, sometimes weeks later

No Broken Windows!
In the classic book The Pragmatic Programmer (Hunt & Thomas, 1999), the authors discuss the broken window
theory48 and its relation to a concept of software entropy where small errors left unfixed breed additional errors....

There are many advantages to finding and fixing bugs early apart from the certainty that Butcher highlights (see
Image# 45 below); there is the knowledge that very few bugs, if any, exist if a zero tolerance policy to bugs is
followed – the “No Broken Windows” mindset as Butcher puts it

Image# 45 - Detecting & Fixing Bugs Early Provides Certainty

Image: Butcher (2009, p. 109)

Bugs Prohibited! – Pragmatic Zero Tolerance
Experience teaches us to avoid perfectionism as it is an impossible goal for a human to achieve, so a zero tolerance
policy towards bugs should be perfectionism tempered by pragmatism

Image# 46 - A Mindset for Debugging...

Image: Butcher (2009, p. 113)

48

 James Q. Wilson and George L. Kelling. "Broken Windows: The Police and Neighbourhood Safety," Atlantic Monthly, 1992

 http://en.wikipedia.org/wiki/Broken_window_theory

http://en.wikipedia.org/wiki/Broken_window_theory
http://en.wikipedia.org/wiki/Broken_window_theory

Appendix H. TESTING & DEBUGGING

Image# 47 - Choose your tools carefully – When necessary create your own tools...

Image: (Brodie, 1981, p. 312)

I had intended to put quite a bit of testing & debugging detail here, but ended up doing the exact reverse !

See: Method#1 Method#2 Method#3 Implicit Test Scaffolding & Unit Testing & Method#4

See also: Death to Bugs !! & Static Analysis using "SPELL"

I am of the view that it is a BIG MISTAKE to allow your development project to be determined and/or driven by the
tools you have available !!

If the available tools are inadequate, MAKE YOUR OWN TOOLS !!
Any competent engineer should be able to make their own tools !!

This what I have had to do as detailed in this document, and it is not as daunting as it seems...

Appendix I. STATIC ANALYSIS USING "SPELL"

The Forth Decompiler called "Spell" I have written is a very valuable tool to display and analyse the code produced
by Forth. Why would you want to do that? Well, part of Forth programming is creating new compilers, and a new
compiler will create new structures of some kind in memory, and you need to see if that is happening correctly...

For example, when I made a "black box" that controlled a scanning radio receiver, I had to write some words to
create memory arrays and scan arrays and to do that I had to write some memory band and scan band compilers...

In the example below, and purely as an example, I will use the Colon Compiler49 to define a new word (“colon
definition”) called SQUARE and analyse its internal form by using the SPELL decompiler tool

Image# 48 - Using the Colon Compiler to create a simple definition & analysing the threaded code produced

Image: Husband, 2011, using keyboard activity, “SPELL” Forth Decompiler Tool & eZ80 code based on the Intel 8080

figForth model

The word : (“colon”) in (i) is a colon definition, as is * (“star”) in (iii)

The words ; (“semi”) in (iv) and DUP in (ii) are code definitions (“primitives”)

SQUARE is a very simple high-level colon definition, which takes a stack item, squares it (multiplies it by itself) and
replaces the result onto the stack

It does this by making a copy of the single stack item with DUP and using * (“star”) to multiply them together,
leaving the result back on the stack

49

 Forth contains a number of compilers (and interpreters) and new compilers and interpreters can be added as required...

Decompilation of the word SQUARE by SPELL exposes its threaded code internal form....

(1) NFA marks the start of the Name Field Address of SQUARE’s header

(2) LFA marks the Link Field Address used for threading the dictionary’s linked list

(3) CFA marks the Code Field Address which always points towards executable code (machine code)

(4) PFA marks the Parameter Field Address which is the start of a field of data which is interpreted by the code
pointed to by the CFA...

In the case of a high-level colon definition, that data is a list of the Code Field Addresses of the other words in the
high-level definition...

In the case of a primitive definition (code definition) the CFA points towards its own PFA (thereby complying with
“rule” (3) above; the PFA contains executable machine code

In the case of other kinds of definitions, such as constants, or variables, the PFA will contain data that will be
interpreted appropriately....

Appendix J. CONFIGURATION MANAGEMENT -

BASELINES & VERSIONING
In a previous life, when I sold multi-tasking Forth up-grades for home computers and then went on to sell "black-
boxes" that decoded data-over-radio, etc, I wrote a lot of software after designing the hardware...
(See: Past Products & Activities)

I always struggled with a particular aspect of the design/software engineering but I never really knew what it was50
and what form the solution might take...

Many years later, when I worked at Agusta-Westland in Yeovil, I was introduced to AllChange, ("A/C") a
configuration management tool/database51 and much more52. It was "love-at-1st-sight"53 and I have my own
personal licence... I am using A/C "straight-out-of-the-box" without using any scripting...

Meta Baselines
A "meta" baseline is a baseline54 that contains other baselines...
So, in this case, my master meta-baseline is "FIG-FORTH_EZ80_R01" See Point 1 in Image# 49 below
The name of the master meta-baseline is "greyed-out" because it is a "virtual baseline" that can/will contain a
number of versions of itself... Why? Because all baselines change and this is a "change management" tool...

Image# 49 - The contents of the FIG-FORTH_EZ80_R01 Master ("Meta") Baseline

50

 I now realise that I was lacking the ability to perform and manage Configurations, Baselining, Versioning and implicitly, being able to perform Reversion, and

creating and preserving Design Archives...
51

 Ethical Note: I am a happy, satisfied customer, who pays Intasoft in Exeter for an annual personal A/C License...
52

 It is highly scriptable and the person @ Westlands who was responsible for it was "underemployed" and was happy to write scripts to implement "team management"

and other "business" functionality... So I described the functionality and he wrote the scripts!
53

 And we all know that feeling... !!
54

 "a baseline is an agreed description of the attributes of a product, at a point in time, which serves as a basis for defining change. A change is a movement from this

baseline state to a next state. The identification of significant changes from the baseline state is the central purpose of baseline identification..."
https://en.wikipedia.org/wiki/Baseline_(configuration_management)

https://intasoft.co.uk/
https://en.wikipedia.org/wiki/Baseline_(configuration_management)

Having a "version" is a means of controlling and documenting change55 within a baseline...

At the moment (while in the development stage) the baseline I am interested in is "FIG-FORTH_EZ80_R01_DEV" as
shown in Point 2 in Image# 49 above

This is the "DEV" metabaseline which contains a further 5 meta-baselines. I am interested in the first of these five;
"FIG-FORTH_EZ80_R01_SW-DEV_APP" as shown underneath Point 2 in Image# 49 above and this meta-baseline
contains another 4 baselines...

Out of those 4 baselines, I am working in "FIG-FORTH_EZ80_R01_SW-DEV_APP_SRC" as shown in Point 356 in
Image# 49 above and it can be seen at Point 4 in Image# 49 above

In Point 4, it can also be seen that this baseline contains 7 locked57 versions... V7 being the state of work as of the
11th February 2020... as seen in Point 5

What this means is that I am currently working on parts that have not yet been baselined58 into a "B008" version...

B007 ("Build 007") Baseline Contents
So, I am taking about baseline "FIG-FORTH_EZ80_R01_SW-DEV_APP_SRC;B007" as seen in Point 6 of Image# 50
below. And this IS NOT a meta-baseline as it contains REAL PARTS !!

Image# 50 - The contents of the Build 7 eZ80 Source Baseline

So, up to now, I've been using A/C in its browsing and viewing baseline modes. Turning to Image# 51, we now see a
parts view59 of the A/C workspace...

The A/C Workspace I am concerned with is shown in Image# 51, Point 10 below... This is mapped onto my "P-Drive"
on my server60. A/C refers to the folders below the top-level as "sub-systems" as in Point 11, and the selected sub-
system is shown in Point 9 and displayed on the right...

55

 A component of software configuration management, version control, also known as revision control or source control,
[1]

 is the management of changes to

documents, computer programs, large web sites, and other collections of information. Changes are usually identified by a number or letter code, termed the "revision
number", "revision level", or simply "revision". https://en.wikipedia.org/wiki/Version_control..... A/C calls it a "Version". Its naming format is determined by the user...
56

 Spot the omission! Baseline FIG-FORTH_EZ80_R01_SW-DEV_APP should contain B007 of baseline FIG-FORTH_EZ80_R01_SW-DEV_APP_SRC *if* it were up-

to-date...
57

 When a baseline is "locked" it is closed and cannot be altered...
58

 This is not a problem for me, but in a commercial environment, the current baseline would be defined 1st as part of the scoping of the work for that iteration... A/C can

be set-up to automagically populate and update the current baseline as team members check files out and then check them in again...
59

 These different views are selected from the toolbar offering "File" "Part" "Workspace" "Baseline", etc. choices as shown in Image# 51, Point 8
60

 If I wanted to view that file structure and those files directly, I could use the "File" option... A/C is happy to work with any existing file/folder structures you may already

have. You can also have multiple workspaces and choose between them...

https://en.wikipedia.org/wiki/Software_configuration_management
https://en.wikipedia.org/wiki/Version_control#cite_note-Mercurial-1
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Version_control

Image# 51 - A "Parts" view of current source development work...

Most of my work is currently being carried out in eZ80_INTERRUPTS.ASM, as shown in Point 13. The system needs
all the other files, so they are all checked-out, too (Point 16)

Versioning61
 If I click on the "+" against the selected file as shown in Point 12, the display will open-up for that file and show all its
versions62 See Image# 52 below

In this way, A/C keeps track of all the changes going on. The user chooses when to check-out and to check back in
again...

Image# 52 - A view of Parts Versioning...

61

 An important "side-effect" of versioning is that it provides visual proof of a development process as a counter to possible future patent or plagiarism claims...
62

 These versions are created automagically as a result of the "checking-out, making changes, checking-in" sequences

Appendix K. "IN THE FLOW"

I am a VERY experienced, self-taught hardware & hardcore software engineer with an "Autotelic" personality...
When programming/testing I always aim to be "in the flow" ...

"Mihaly Csikszentmihalyi describes people who are internally driven, and who as such may exhibit a sense of
purpose and curiosity, as autotelic. This is different from being externally driven, in which case things such as
comfort, money, power, or fame are the motivating force. Csikszentmihalyi writes:

 "An autotelic person needs few material possessions and little entertainment, comfort, power, or fame because so
much of what he or she does is already rewarding. Because such persons experience flow in work, in family life, when
interacting with people, when eating, even when alone with nothing to do, they depend less on external rewards that
keep others motivated to go on with a life of routines. They are more autonomous and independent because they
cannot be as easily manipulated with threats or rewards from the outside. At the same time, they are more involved
with everything around them because they are fully immersed in the current of life""

Image# 53 - The Flow Channel

https://en.wikipedia.org/wiki/Autotelic
https://en.wikipedia.org/wiki/Mihaly_Csikszentmihalyi
https://en.wikipedia.org/wiki/Curiosity
https://en.wikipedia.org/wiki/Motivation

Appendix L. PAST PRODUCTS & ACTIVITIES

Image# 54 - Advert for the Multitasking ZX-81 Forth ROM

Image: (Husband, 1984)

 1984 - Multitasking ZX81 Forth

The revolutionary ZX81 computer by Clive Sinclair came out in 1981 and quickly sold in large quantities. Sinclair
claimed (rather tongue-in-cheek) that you could use it to control a power station. It was based on a Z80 running at
about 2 Mhz. It had an 8k basic

I sold a replacement for the internal Basic ROM that converted the ZX81 into a multitasking Forth machine. It could
even run overlapping multitasked windows which was rather revolutionary at the time because it was some time
before Microsoft came out with Windows 3.0 which did the same thing on a PC

1985 - Multitasking BBC Forth-83

Image# 55 - Advert for the Multitasking BBC Forth 83 ROM

Image: (Husband, 1985)

This Forth was sold as a plug-in eprom for the BBC computer and as a ROM Cartridge for the Acorn Electron

Image# 56 - Advert for the Scanmaster II Scanner Controller

Image: (Husband, 1990)

Image# 57 - Advert for the Scanmaster II Professional Communications Decoder

Image: (Husband, 1991)

Image# 58 - Review of MPT1327 Decoding by the Scanmaster II

Image: (Husband, 1993, p. 40)

